Calibration of input-match and its center frequency for an inductively degenerated low noise amplifier

Author(s):  
Sami Mahersi ◽  
Hassene Mnif ◽  
Mourad Loulou
2021 ◽  
Vol 2108 (1) ◽  
pp. 012102
Author(s):  
Chao Ma ◽  
Hongjiang Wu ◽  
Xudong Lu ◽  
Haitao Sun

Abstract Based on CMOS process, a low noise amplifier(LNA) operating at 7.4GHz~11.4GHz was designed. The two-stage differential cascode structure is adopted. Transformer was used to achieve inter-stage matching. Balun was used to achieve input and output matching, which reduces the number of inductors used, effectively reduces the chip size while ensuring good gain and noise figure. The actual measurement results show that the power gain at the center frequency of 9.4GHz is 27dB, the maximum noise figure is less than 3.82dB, the output power 1dB compression point is greater than 8dBm, the chip area is only 0.41mm×0.83mm(excluding PAD).


2013 ◽  
Vol 60 (4) ◽  
pp. 192-196 ◽  
Author(s):  
Bogdan Georgescu ◽  
Roghoyeh Salmeh ◽  
Michel Fattouche ◽  
Fadhel Ghannouchi

2018 ◽  
Vol 17 (2) ◽  
pp. 37-42
Author(s):  
Mohammad Mohiuddin Uzzal

In first stage of each microwave receiver, there is a Low Noise Amplifier (LNA) stage, and this LNA plays an important role to determine the quality factor of the receiver. The design of a LNA requires the trade-off of many important parameters including gain, Noise Figure (NF), stability, power consumption, cost and design complexity. In this paper, we have designed and simulate a single stage stable LNA circuit having gain 11.78 dB and noise figure 1.86 dB using microwave BJT AT3103 with Agilent package Advance Design Systems (ADS). This LNA operates at center frequency of 2 GHZ and it can be used in L-Band satellite modem for tracking applications.


Author(s):  
Maizan Muhamad ◽  
Norhayati Soin ◽  
Harikrishnan Ramiah

This paper presents the development of low noise amplifier integrated circuit using 130nm RFCMOS technology. The low noise amplifier function is to amplify extremely low noise amplifier without adding noise and preserving required signal to a noise ratio. A detailed methodology and analysis that leads to a low power LNA are being discussed throughout this paper. Inductively degenerated and Gm-boosted topology are used to design the circuit. Design specifications are focused for 802.11b/g/n IEEE Wireless LAN Standards with center frequency of 2.4 GHz. The best low noise amplifier provides a power gain (S21) of 19.841 dB with noise figure (NF) of 1.497 dB using the gm-boosted topology while the best low power amplifier drawing 4.19mW power from a 1.2V voltage supply using the inductively degenerated.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 227
Author(s):  
J Manjula ◽  
A Ruhan Bevi

This paper presents an Adaptive Gain 79GHz Low Noise Amplifier (LNA) suitable for Radars applications. The circuit schematic is a two stage LNA consists of Differential cascode configuration followed by a simple common source amplifier with an Adaptive Biasing (ADB) circuit. Adaptive biasing is a three- stage common source amplifier to decrease output voltage as input power increases. The circuit is simulated in 180nm CMOS technology and the simulation results have proved that the circuit operates at the center frequency 79GHz with adaptive biasing for adaptive gain. The gain analysis shows a decrease of 35-30dB with an increase in input power -50 to 0 dB. At 79GHz the circuit has achieved the input reflection coefficient (S11) of -24.7dB, reverse isolation (S12) of -3 dB, forward transmission coefficient (S21) of -2.97dB and output reflection coefficient (S22) of -5.62 dB with the reduced noise figure of 0.9 dB and a power consumption of 236 mW.  


2018 ◽  
Vol E101.C (1) ◽  
pp. 82-90
Author(s):  
Chang LIU ◽  
Zhi ZHANG ◽  
Zhiping WANG

Sign in / Sign up

Export Citation Format

Share Document