In vivo measurements with a 64-channel extracellular neural recording integrated circuit

Author(s):  
Manuel Delgado-Restituto ◽  
Alberto Rodriguez-Perez ◽  
Angela A. Darie ◽  
Angel Rodriguez-Vazquez ◽  
Cristina Soto-Sanchez ◽  
...  
Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 477 ◽  
Author(s):  
Mohit Sharma ◽  
Avery Gardner ◽  
Hunter Strathman ◽  
David Warren ◽  
Jason Silver ◽  
...  

Neural recording systems that interface with implanted microelectrodes are used extensively in experimental neuroscience and neural engineering research. Interface electronics that are needed to amplify, filter, and digitize signals from multichannel electrode arrays are a critical bottleneck to scaling such systems. This paper presents the design and testing of an electronic architecture for intracortical neural recording that drastically reduces the size per channel by rapidly multiplexing many electrodes to a single circuit. The architecture utilizes mixed-signal feedback to cancel electrode offsets, windowed integration sampling to reduce aliased high-frequency noise, and a successive approximation analog-to-digital converter with small capacitance and asynchronous control. Results are presented from a 180 nm CMOS integrated circuit prototype verified using in vivo experiments with a tungsten microwire array implanted in rodent cortex. The integrated circuit prototype achieves <0.004 mm2 area per channel, 7 µW power dissipation per channel, 5.6 µVrms input referred noise, 50 dB common mode rejection ratio, and generates 9-bit samples at 30 kHz per channel by multiplexing at 600 kHz. General considerations are discussed for rapid time domain multiplexing of high-impedance microelectrodes. Overall, this work describes a promising path forward for scaling neural recording systems to numbers of electrodes that are orders of magnitude larger.


2020 ◽  
Vol 6 (3) ◽  
pp. 268-271
Author(s):  
Michael Reiß ◽  
Ady Naber ◽  
Werner Nahm

AbstractTransit times of a bolus through an organ can provide valuable information for researchers, technicians and clinicians. Therefore, an indicator is injected and the temporal propagation is monitored at two distinct locations. The transit time extracted from two indicator dilution curves can be used to calculate for example blood flow and thus provide the surgeon with important diagnostic information. However, the performance of methods to determine the transit time Δt cannot be assessed quantitatively due to the lack of a sufficient and trustworthy ground truth derived from in vivo measurements. Therefore, we propose a method to obtain an in silico generated dataset of differently subsampled indicator dilution curves with a ground truth of the transit time. This method allows variations on shape, sampling rate and noise while being accurate and easily configurable. COMSOL Multiphysics is used to simulate a laminar flow through a pipe containing blood analogue. The indicator is modelled as a rectangular function of concentration in a segment of the pipe. Afterwards, a flow is applied and the rectangular function will be diluted. Shape varying dilution curves are obtained by discrete-time measurement of the average dye concentration over different cross-sectional areas of the pipe. One dataset is obtained by duplicating one curve followed by subsampling, delaying and applying noise. Multiple indicator dilution curves were simulated, which are qualitatively matching in vivo measurements. The curves temporal resolution, delay and noise level can be chosen according to the requirements of the field of research. Various datasets, each containing two corresponding dilution curves with an existing ground truth transit time, are now available. With additional knowledge or assumptions regarding the detection-specific transfer function, realistic signal characteristics can be simulated. The accuracy of methods for the assessment of Δt can now be quantitatively compared and their sensitivity to noise evaluated.


Author(s):  
Diego Guerra-Rodríguez ◽  
Liliana Rozo ◽  
Daniel Basilio ◽  
Juan Guerrero-Henriquez
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 725
Author(s):  
Saeyeong Jeon ◽  
Youjin Lee ◽  
Daeho Ryu ◽  
Yoon Kyung Cho ◽  
Yena Lee ◽  
...  

During the last decade, optogenetics has become an essential tool for neuroscience research due to its unrivaled feature of cell-type-specific neuromodulation. There have been several technological advances in light delivery devices. Among them, the combination of optogenetics and electrophysiology provides an opportunity for facilitating optogenetic approaches. In this study, a novel design of an optrode array was proposed for realizing optical modulation and electrophysiological recording. A 4 × 4 optrode array and five-channel recording electrodes were assembled as a disposable part, while a reusable part comprised an LED (light-emitting diode) source and a power line. After the characterization of the intensity of the light delivered at the fiber tips, in vivo animal experiment was performed with transgenic mice expressing channelrhodopsin, showing the effectiveness of optical activation and neural recording.


2017 ◽  
Vol 5 (13) ◽  
pp. 2445-2458 ◽  
Author(s):  
I. Mitch Taylor ◽  
Zhanhong Du ◽  
Emma T. Bigelow ◽  
James R. Eles ◽  
Anthony R. Horner ◽  
...  

First everin vivosensor for directly measuring cocaine concentration in the brainviaelectrochemical detection at DNA aptamer functionalized single shank, silicon-based neural recording probes.


1987 ◽  
Author(s):  
Peter C. Magnante ◽  
Leo T. Chylack ◽  
George B. Benedek ◽  
Teodosio Libondi ◽  
Stephen N. Joffe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document