cmos integrated circuit
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 1)

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 122
Author(s):  
Jiemin Li ◽  
Shancong Zhang ◽  
Chong Bao

With the development of large-scale CMOS-integrated circuit manufacturing technology, microprocessor chips are more vulnerable to soft errors and radiation interference, resulting in reduced reliability. Core reliability is an important element of the microprocessor’s ability to resist soft errors. This paper proposes DuckCore, a fault-tolerant processor core architecture based on the free and open instruction set architecture (ISA) RISC-V. This architecture uses improved SECDED (single error correction, double error detection) code between pipelines, detects processor operating errors in real-time through the Supervision unit, and takes instruction rollbacks for different error types, which not only saves resources but also improves the reliability of the processor core. In the implementation process, all error injection tests are passed to verify the completeness of the function. In order to better verify the performance of the processor under different error intensity injections, the software is used to inject errors, the running program is run on the FPGA (Field Programmable Gate Array), and the impact of the actual radiation environment on the architecture is evaluated through the results. The architecture is applied to three–five-stage open-source processor cores and the results show that this method consumes fewer resources and its discrete design makes it more portable.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3148
Author(s):  
Martín Alejandro Valencia-Ponce ◽  
Esteban Tlelo-Cuautle ◽  
Luis Gerardo de la Fraga

In CMOS integrated circuit (IC) design, operational amplifiers are one of the most useful active devices to enhance applications in analog signal processing, signal conditioning and so on. However, due to the CMOS technology downscaling, along the very large number of design variables and their trade-offs, it results difficult to reach target specifications without the application of optimization methods. For this reason, this work shows the advantages of performing many-objective optimization and this algorithm is compared to the well-known mono- and multi-objective metaheuristics, which have demonstrated their usefulness in sizing CMOS ICs. Three CMOS operational transconductance amplifiers are the case study in this work; they were sized by applying mono-, multi- and many-objective algorithms. The well-known non-dominated sorting genetic algorithm version 3 (NSGA-III) and the many-objective metaheuristic-based on the R2 indicator (MOMBI-II) were applied to size CMOS amplifiers and their sized solutions were compared to mono- and multi-objective algorithms. The CMOS amplifiers were optimized considering five targets, associated to a figure of merit (FoM), differential gain, power consumption, common-mode rejection ratio and total silicon area. The designs were performed using UMC 180 nm CMOS technology. To show the advantage of applying many-objective optimization algorithms to size CMOS amplifiers, the amplifier with the best performance was used to design a fractional-order integrator based on OTA-C filters. A variation analysis considering the process, the voltage and temperature (PVT) and a Monte Carlo analysis were performed to verify design robustness. Finally, the OTA-based fractional-order integrator was used to design a fractional-order chaotic oscillator, showing good agreement between numerical and SPICE simulations.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1205 ◽  
Author(s):  
Iván Zamora ◽  
Eyglis Ledesma ◽  
Arantxa Uranga ◽  
Núria Barniol

This paper presents an analog front-end transceiver for an ultrasound imaging system based on a high-voltage (HV) transmitter, a low-noise front-end amplifier (RX), and a complementary-metal-oxide-semiconductor, aluminum nitride, piezoelectric micromachined ultrasonic transducer (CMOS-AlN-PMUT). The system was designed using the 0.13-μm Silterra CMOS process and the MEMS-on-CMOS platform, which allowed for the implementation of an AlN PMUT on top of the CMOS-integrated circuit. The HV transmitter drives a column of six 80-μm-square PMUTs excited with 32 V in order to generate enough acoustic pressure at a 2.1-mm axial distance. On the reception side, another six 80-μm-square PMUT columns convert the received echo into an electric charge that is amplified by the receiver front-end amplifier. A comparative analysis between a voltage front-end amplifier (VA) based on capacitive integration and a charge-sensitive front-end amplifier (CSA) is presented. Electrical and acoustic experiments successfully demonstrated the functionality of the designed low-power analog front-end circuitry, which outperformed a state-of-the art front-end application-specific integrated circuit (ASIC) in terms of power consumption, noise performance, and area.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 252 ◽  
Author(s):  
Victor Carbajal-Gomez ◽  
Esteban Tlelo-Cuautle ◽  
Carlos Sanchez-Lopez ◽  
Francisco Fernandez-Fernandez

Designing chaotic oscillators using complementary metal-oxide-semiconductor (CMOS) integrated circuit technology for generating multi-scroll attractors has been a challenge. That way, we introduce a current-mode piecewise-linear (PWL) function based on CMOS cells that allow programmable generation of 2–7-scroll chaotic attractors. The mathematical model of the chaotic oscillator designed herein has four coefficients and a PWL function, which can be varied to provide a high value of the maximum Lyapunov exponent. The coefficients are implemented electronically by designing operational transconductance amplifiers that allow programmability of their transconductances. Design simulations of the chaotic oscillator are provided for the 0.35 μ m CMOS technology. Post-layout and process–voltage–temperature (PVT) variation simulations demonstrate robustness of the multi-scroll chaotic attractors. Finally, we highlight the synchronization of two seven-scroll attractors in a master–slave topology by generalized Hamiltonian forms and observer approach. Simulation results show that the synchronized CMOS chaotic oscillators are robust to PVT variations and are suitable for chaotic secure communication applications.


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 477 ◽  
Author(s):  
Mohit Sharma ◽  
Avery Gardner ◽  
Hunter Strathman ◽  
David Warren ◽  
Jason Silver ◽  
...  

Neural recording systems that interface with implanted microelectrodes are used extensively in experimental neuroscience and neural engineering research. Interface electronics that are needed to amplify, filter, and digitize signals from multichannel electrode arrays are a critical bottleneck to scaling such systems. This paper presents the design and testing of an electronic architecture for intracortical neural recording that drastically reduces the size per channel by rapidly multiplexing many electrodes to a single circuit. The architecture utilizes mixed-signal feedback to cancel electrode offsets, windowed integration sampling to reduce aliased high-frequency noise, and a successive approximation analog-to-digital converter with small capacitance and asynchronous control. Results are presented from a 180 nm CMOS integrated circuit prototype verified using in vivo experiments with a tungsten microwire array implanted in rodent cortex. The integrated circuit prototype achieves <0.004 mm2 area per channel, 7 µW power dissipation per channel, 5.6 µVrms input referred noise, 50 dB common mode rejection ratio, and generates 9-bit samples at 30 kHz per channel by multiplexing at 600 kHz. General considerations are discussed for rapid time domain multiplexing of high-impedance microelectrodes. Overall, this work describes a promising path forward for scaling neural recording systems to numbers of electrodes that are orders of magnitude larger.


Sign in / Sign up

Export Citation Format

Share Document