dilution curves
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 16)

H-INDEX

34
(FIVE YEARS 3)

2022 ◽  
Vol 132 ◽  
pp. 126414
Author(s):  
Jiaoyang He ◽  
Jifeng Ma ◽  
Qiang Cao ◽  
Xue Wang ◽  
Xia Yao ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259204
Author(s):  
Chun Ye ◽  
Ying Liu ◽  
Jizhong Liu ◽  
Yanda Li ◽  
Binfeng Sun ◽  
...  

In order to investigate the feasibility of using rice critical nitrogen concentration as a nitrogen nutrition diagnosis index, a two-year positioning field gradient experiment using four rice varieties and four nitrogen levels (0, 75, 150, 225 kg·ha–1 for early rice; 0, 90, 180, 270 kg·ha–1 for late rice) was conducted for early and late rice. The critical dilution curves (Nc%) of the double-cropped rice based on leaf dry matter (LDM) were constructed and verified using the field data. Two critical nitrogen dilution curves and nitrogen nutrition indexes (NNI) of rice LDM were constructed for early rice [Nc% = 2.66LDM−0.79, R2 = 0.88, NNI ranged between 0.29–1.74, and the average normalized root mean square error (n-RMSE = 19.35%)] and late rice [Nc% = 7.46LDM−1.42, R2 = 0.91, NNI was between 0.55–1.53, and the average (n-RMSE = 15.14%)]. The relationship between NNI and relative yield was a quadratic polynomial equation and suggested that the optimum nitrogen application rate for early rice was sightly smaller than 150 kg·ha–1, and that for late rice was about 180 kg·ha-1. The developed critical nitrogen concentration dilution curves, based on leaf dry matter, were able to diagnose nitrogen nutrition in the double-cropped rice region.


2021 ◽  
Vol 55 (4) ◽  
pp. 165-170
Author(s):  
Terra A. Kremer ◽  
Daniel Olsen ◽  
Chad Summers ◽  
Alpa Patel ◽  
Julie Hoover ◽  
...  

Abstract Cleaning chemistries are detergent-based formulations that are used during the processing of reusable medical devices. Manufacturers are responsible for demonstrating the safety of cleaning formulations when they are used during a device processing cycle, including the risk of device-associated cytotoxicity over the concentration ranges for recommended use and rinsing during cleaning. However, no regulation currently exists requiring manufacturers to demonstrate such safety. Although manufacturers' safety data sheets (SDSs) provide information on the safe use of chemicals for users, this information may not provide sufficient detail to determine the risks of residual chemicals on device surfaces. SDSs are not required to contain a comprehensive list of chemicals used, only those of risk to the user. They should be supplemented with information on the correct concentrations that should be used for cleaning, as well as instructions on the rinsing required to reduce the levels of chemicals to safe (nontoxic) levels prior to further processing. Supporting data, such as toxicity profiles or cytotoxicity data that support the instructions for use, would provide medical device manufacturers and healthcare personnel with the necessary information to make informed decisions about selection and correct use of detergents. In the current work, cytotoxicity profiles for eight commonly used cleaning formulations available internationally were studied. Although all of these products are indicated for use in the cleaning of reusable medical devices, results vary across the serial dilution curves and are not consistent among detergent types. The information presented here can be leveraged by both medical device manufacturers and processing department personnel to properly assess residual detergent risks during processing. This work also serves as a call to cleaning formulation manufacturers to provide this information for all chemistries.


2021 ◽  
Vol 273 ◽  
pp. 108301
Author(s):  
Ignacio A. Ciampitti ◽  
David Makowski ◽  
Javier Fernandez ◽  
Josefina Lacasa ◽  
Gilles Lemaire

2021 ◽  
Vol 128 ◽  
pp. 126315
Author(s):  
Bo Yao ◽  
Xiaolong Wang ◽  
Gilles Lemaire ◽  
David Makowski ◽  
Qiang Cao ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ady Naber ◽  
Michael Reiß ◽  
Werner Nahm

The vascular function of a vessel can be qualitatively and intraoperatively checked by recording the blood dynamics inside the vessel via fluorescence angiography (FA). Although FA is the state of the art in proving the existence of blood flow during interventions such as bypass surgery, it still lacks a quantitative blood flow measurement that could decrease the recurrence rate and postsurgical mortality. Previous approaches show that the measured flow has a significant deviation compared to the gold standard reference (ultrasonic flow meter). In order to systematically address the possible sources of error, we investigated the error in transit time measurement of an indicator. Obtaining in vivo indicator dilution curves with a known ground truth is complex and often not possible. Further, the error in transit time measurement should be quantified and reduced. To tackle both issues, we first computed many diverse indicator dilution curves using an in silico simulation of the indicator's flow. Second, we post-processed these curves to mimic measured signals. Finally, we fitted mathematical models (parabola, gamma variate, local density random walk, and mono-exponential model) to re-continualize the obtained discrete indicator dilution curves and calculate the time delay of two analytical functions. This re-continualization showed an increase in the temporal accuracy up to a sub-sample accuracy. Thereby, the Local Density Random Walk (LDRW) model performed best using the cross-correlation of the first derivative of both indicator curves with a cutting of the data at 40% of the peak intensity. The error in frames depends on the noise level and is for a signal-to-noise ratio (SNR) of 20 dB and a sampling rate of fs = 60 Hz at fs-1·0.25(±0.18), so this error is smaller than the distance between two consecutive samples. The accurate determination of the transit time and the quantification of the error allow the calculation of the error propagation onto the flow measurement. Both can assist surgeons as an intraoperative quality check and thereby reduce the recurrence rate and post-surgical mortality.


2021 ◽  
Vol 43 ◽  
pp. e48299
Author(s):  
Regina Maria Nascimento Augusto Blaitt ◽  
Vivian Lo Tierzo ◽  
Juliana Célia Denadai ◽  
Cibele Regina de Souza Kruliski ◽  
Carlos Ducatti ◽  
...  

The objective of this study was to evaluate the behavior of carbon incorporation and turnover in hoof and ribs of pigs at different periods of development in the search for tissues that reflect longer the former diet. We used 132 commercial hybrids (barrows and females), weaned at an average age of 21 days, distributed in a completely randomized design with four treatments on different days of substitution of corn (C4 cycle plant grain) diets with broken rice (C3 cycle plant grain) at 21, 42, 63 and 110 days of age to change the carbon-13 isotope signal. By means of isotopic dilution curves, we observed that animals whose C4 diet was replaced with C3 diet at 21, 42, 63 and 110 days of age, for hoof and rib, reached a new level of isotope equilibrium. Bone samples are better choices to reflect the former diet, due to conservation of the isotopic signal for longer.


2020 ◽  
Vol 41 (1) ◽  
Author(s):  
Joy Geraldine Adiele ◽  
Antonius G. T. Schut ◽  
Kodjovi S. Ezui ◽  
Pieter Pypers ◽  
Ken E. Giller

AbstractFertilizers are required to improve productivity of cassava and meet the increasing demand for cassava as food, feed, or raw material for processing industries. Our objective was to develop nutrition indices for N, P, and K to provide quantitative insight in the dynamics of nutrient demand and uptake of cassava. On-farm experiments were conducted at six locations in Nigeria from 2016 to 2018, across the major cassava growing agro-ecologies of West Africa. Nitrogen, P, and K were applied at different rates. Uptake of nutrients was measured in leaves, stems, and storage roots at 4, 8, and 12 or 14 months after planting (MAP) and used to construct NPK dilution curves and nutrition indices. About 67, 61, and 52% of total N, P, and K were taken up at 4 MAP, with a maximum uptake rate of 0.21, 0.03, and 0.12 g/m2/d for N, P, and K, respectively. Nutrient concentrations in stems and storage roots declined gradually, in contrast to concentrations in the leaves that fluctuated within narrow ranges. Dilution curves and nutrition indices for N, P, and K were established for the first time in cassava. Dilution curves of N, P, and K in the crop for the highest NPK application treatment were described as Nc = 82DM−0.61, Pc = 7.4DM−0.54, and Kc = 43DM−0.54, when total biomass was between 5 and 57 t/ha dry matter (DM). The nutrition indices were linearly related to relative crop biomass. Insight into the nutrient uptake and dilution patterns during the growth cycle can help to understand the temporal nutrient demands of cassava and identify sustainable management practices. Initial ample supply of N and P and moderate K, with extra K top-dress during the second growth phase, will benefit cassava growth and yield. Furthermore, such information provides a basis to develop a dynamic model to simulate nutrient-limited growth of cassava.


2020 ◽  
Vol 6 (3) ◽  
pp. 268-271
Author(s):  
Michael Reiß ◽  
Ady Naber ◽  
Werner Nahm

AbstractTransit times of a bolus through an organ can provide valuable information for researchers, technicians and clinicians. Therefore, an indicator is injected and the temporal propagation is monitored at two distinct locations. The transit time extracted from two indicator dilution curves can be used to calculate for example blood flow and thus provide the surgeon with important diagnostic information. However, the performance of methods to determine the transit time Δt cannot be assessed quantitatively due to the lack of a sufficient and trustworthy ground truth derived from in vivo measurements. Therefore, we propose a method to obtain an in silico generated dataset of differently subsampled indicator dilution curves with a ground truth of the transit time. This method allows variations on shape, sampling rate and noise while being accurate and easily configurable. COMSOL Multiphysics is used to simulate a laminar flow through a pipe containing blood analogue. The indicator is modelled as a rectangular function of concentration in a segment of the pipe. Afterwards, a flow is applied and the rectangular function will be diluted. Shape varying dilution curves are obtained by discrete-time measurement of the average dye concentration over different cross-sectional areas of the pipe. One dataset is obtained by duplicating one curve followed by subsampling, delaying and applying noise. Multiple indicator dilution curves were simulated, which are qualitatively matching in vivo measurements. The curves temporal resolution, delay and noise level can be chosen according to the requirements of the field of research. Various datasets, each containing two corresponding dilution curves with an existing ground truth transit time, are now available. With additional knowledge or assumptions regarding the detection-specific transfer function, realistic signal characteristics can be simulated. The accuracy of methods for the assessment of Δt can now be quantitatively compared and their sensitivity to noise evaluated.


Sign in / Sign up

Export Citation Format

Share Document