The Impact on L-Lactic Acid Fermentation with Jinggangmycin Fermentation Residue as Nitrogen Source

Author(s):  
Hui Zou ◽  
Qunhui Wang ◽  
Yingying Liu ◽  
Wengong Zhou
2009 ◽  
Vol 52 (6) ◽  
pp. 2047-2054 ◽  
Author(s):  
W. Yao ◽  
X. Wu ◽  
J. Zhu ◽  
B. Sun ◽  
C. Miller

Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1194
Author(s):  
Rebecca Kowalski ◽  
Erika Gustafson ◽  
Matthew Carroll ◽  
Elvira Gonzalez de Mejia

Blackcurrants (BC) and yogurt are known to possess several health benefits. The objective of this review was to compile the latest information on the effect of lactic acid fermentation on BC and their incorporation into yogurt, including the impact of this combination on chemical composition, sensory aspects, and health attributes of the blend. Google Scholar, Scopus, and PubMed were used to research the most recent literature on BC juice, the whole BC berry, and yogurt. Health benefits were assessed from human and animal studies within the last 5 years. The results suggest that BC have several health promoting compounds that ameliorate some neurological disorders and improve exercise recovery. Yogurt contains compounds that can be used to manage diseases such as type 2 diabetes (T2D) and irritable bowel disease (IBD). Fermenting BC with lactic acid bacteria (LAB) and its incorporation into yogurt products increases the polyphenol and antioxidant capacity of BC, creating a blend of prebiotics and probiotics compounds with enhanced benefits. More research is needed in the area of lactic acid fermentation of berries in general, especially BC.


Author(s):  
Rahmat Folashade Zakariyah ◽  
Micheal Oluwaseyi Ojo ◽  
Kamoldeen Abiodun Ajijolakewu ◽  
Kudirat Bolanle Saliu ◽  
Risikat Nike Ahmed ◽  
...  

The demand for lactic acid is steadily increasing due to the desire of its bioproduction over chemical synthesis. The associated cost, however, is a significant hurdle. This study reports lactic acid fermentation by Lactobacillus casei ATCC334 from cassava peel. It investigates the effect of unhydrolysed cassava peels, acidic, alkali hydrolysates; fermenting pH; substrate concentration; nitrogen source concentration; duration; and inoculum size. An attempt at a cheaper purification and recovery protocol relative to those currently in use was similarly performed. Acidic hydrolysate yielded 10.53%, unhydrolysed substrate gave 4.80% with alkali hydrolysate yielding 4.75%. The highest LA yield was obtained at pH 6.0, 2.0% v/v inoculum size, 25% w/v substrate concentration, 5% nitrogen source concentration. A post-optimisation combination yielded 18.3% LA suggesting that one-factor-at-a-time may be unsuitable for optimisation studies involving cassava peel and L. casei ATCC334. FTIR spectra of product suggests effective partial purification. Hence, an improvement in the optimization strategy for production is recommended for subsequent study.


Detritus ◽  
2021 ◽  
pp. 48-53
Author(s):  
Daniel Pleissner ◽  
Clemens Krieg ◽  
Jan Christoph Peinemann

The management of sewage sludge is mostly limited to anaerobic digestion, incineration of digestate and recovery of phosphorous. In terms of resource efficiency, it is recommended to make use of the potential of all organic compounds. Nitrogen compounds, for instance, can find application as nutrients in biotechnological processes. To follow this approach, sewage sludge collected after anaerobic digestion, which had carbon and nitrogen contents of 35.9% (w/w) and 5.6% (w/w), respectively, was first hydrolyzed using 0-1% (w/w) sulphuric acid for 15 minutes at 121°C and the hydrolysate used as nitrogen source in lactic acid fermentation. Even though the focus was on a recovery of nitrogen compounds, the hydrolytic treatment with 1% (v/v) sulphuric acid resulted in a release of 28 mg g-1 glucose. Because of the complex composition of the obtained hydrolysate it was not possible to quantify the released organic nitrogen compounds. Lactic acid fermentations, however, revealed that the concentration of organic nitrogen compounds was sufficient to efficiently convert 10 g L-1 of added glucose into 9 g L-1 lactic acid, and thus it is expected that digested sewage sludge may be an alternative nitrogen source in lactic acid fermentation, possibly combined with the utilization of a carbon-rich feedstock. Such a utilization approach goes beyond the conventional management strategies of digestated sewage sludge and allows a material utilization even after anaerobic digestion.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
P Lorenz ◽  
S Duckstein ◽  
J Bertrams ◽  
U Meyer ◽  
F Stintzing

LWT ◽  
2021 ◽  
pp. 111927
Author(s):  
Yuan Shi ◽  
Anika Singh ◽  
David Kitts ◽  
Anubhav Pratap-Singh

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 494 ◽  
Author(s):  
Kang Hyun Lee ◽  
Ye Won Jang ◽  
Jeongho Lee ◽  
Seunghee Kim ◽  
Chulhwan Park ◽  
...  

Biorefinery, which utilizes carbon-neutral biomass as a resource, is attracting attention as a significant alternative in a modern society confronted with climate change. In this study, spent coffee grounds (SCGs) were used as the feedstock for lactic acid fermentation. In order to improve sugar conversion, alkali pretreatment was optimized by a statistical method, namely response surface methodology (RSM). The optimum conditions for the alkali pretreatment of SCGs were determined as follows: 75 °C, 3% potassium hydroxide (KOH) and a time of 2.8 h. The optimum conditions for enzymatic hydrolysis of pretreated SCGs were determined as follows: enzyme complex loading of 30-unit cellulase, 15-unit cellobiase and 50-unit mannanase per g biomass and a reaction time of 96 h. SCG hydrolysates were used as the carbon source for Lactobacillus cultivation, and the conversions of lactic acid by L. brevis ATCC 8287 and L. parabuchneri ATCC 49374 were 40.1% and 55.8%, respectively. Finally, the maximum lactic acid production by L. parabuchneri ATCC 49374 was estimated to be 101.2 g based on 1000 g of SCGs through the optimization of alkali pretreatment and enzymatic hydrolysis.


Sign in / Sign up

Export Citation Format

Share Document