Fitness function evaluation for the detection of multiple ellipses using a genetic algorithm

Author(s):  
Cesar Cruz-Diaz ◽  
Luis Gerardo de la Fraga ◽  
Oliver Schutze
Author(s):  
Narjes Timnak ◽  
Alireza Jahangirian

In this study, two new techniques are proposed for accelerating the multi-point optimization of an airfoil shape by genetic algorithms. In such multi-point evolutionary optimization, the objective function has to be evaluated several times more than a single-point optimization. Thus, excessive computational time is crucial in these problems particularly, when computational fluid dynamics is used for fitness function evaluation. Two new techniques of preadaptive range operator and adaptive mutation rate are proposed. An unstructured grid Navier–Stokes flow solver with a two-equation [Formula: see text] turbulence model is used to evaluate the objective function. The new methods are applied for optimum design of a transonic airfoil at two speed conditions. The results show that using the new methods can increase the aerodynamic efficiency of optimum airfoil at each operating condition with about 30% less computational time in comparison with the conventional genetic algorithm approach.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1297
Author(s):  
Md. Shabiul Islam ◽  
Most Tahamina Khatoon ◽  
Kazy Noor-e-Alam Siddiquee ◽  
Wong Hin Yong ◽  
Mohammad Nurul Huda

Problem solving and modelling in traditional substitution methods at large scale for systems using sets of simultaneous equations is time consuming. For such large scale global-optimization problem, Simulated Annealing (SA) algorithm and Genetic Algorithm (GA) as meta-heuristics for random search technique perform faster. Therefore, this study applies the SA to solve the problem of linear equations and evaluates its performances against Genetic Algorithms (GAs), a population-based search meta-heuristic, which are widely used in Travelling Salesman problems (TSP), Noise reduction and many more. This paper presents comparison between performances of the SA and GA for solving real time scientific problems. The significance of this paper is to solve the certain real time systems with a set of simultaneous linear equations containing different unknown variable samples those were simulated in Matlab using two algorithms-SA and GA. In all of the experiments, the generated random initial solution sets and the random population of solution sets were used in the SA and GA respectively. The comparison and performances of the SA and GA were evaluated for the optimization to take place for providing sets of solutions on certain systems. The SA algorithm is superior to GA on the basis of experimentation done on the sets of simultaneous equations, with a lower fitness function evaluation count in MATLAB simulation. Since, complex non-linear systems of equations have not been the primary focus of this research, in future, performances of SA and GA using such equations will be addressed. Even though GA maintained a relatively lower number of average generations than SA, SA still managed to outperform GA with a reasonably lower fitness function evaluation count. Although SA sometimes converges slowly, still it is efficient for solving problems of simultaneous equations in this case. In terms of computational complexity, SA was far more superior to GAs.


2018 ◽  
Vol 7 (2.26) ◽  
pp. 67 ◽  
Author(s):  
A S. Arunachalam ◽  
T Velmurugan

Educational Data Mining (EDM) and Learning Systematic (LS) research have appeared as motivating areas of research, which are clarifying beneficial understanding from educational databases for many purposes such as predicting student’s success factor. The ability to predict a student’s performance can be beneficial in modern educational systems. This research work aims at developing an evolutionary approach based on genetic algorithm and the artificial neural network. The traditional artificial neural network lacks predicting student performance due to the poor modeling structure and the capability of assigning proper weights to each node under the hidden layer. This problem is overwhelmed with the aid of genetic algorithm optimization approach which produces appropriate fitness function evaluation in each iteration of the learning process. The performances gradually increase the accuracy of the prediction and classification more precisely.


1997 ◽  
Vol 5 (3) ◽  
pp. 277-302 ◽  
Author(s):  
Anne M. Raich ◽  
Jamshid Ghaboussi

A new representation combining redundancy and implicit fitness constraints is introduced that performs better than a simple genetic algorithm (GA) and a structured GA in experiments. The implicit redundant representation (IRR) consists of a string that is over-specified, allowing for sections of the string to remain inactive during function evaluation. The representation does not require the user to prespecify the number of parameters to evaluate or the location of these parameters within the string. This information is obtained implicitly by the fitness function during the GA operations. The good performance of the IRR can be attributed to several factors: less disruption of existing fit members due to the increased probability of crossovers and mutation affecting only redundant material; discovery of fit members through the conversion of redundant material into essential information; and the ability to enlarge or reduce the search space dynamically by varying the number of variables evaluated by the fitness function. The IRR GA provides a more biologically parallel representation that maintains a diverse population throughout the evolution process. In addition, the IRR provides the necessary flexibility to represent unstructured problem domains that do not have the explicit constraints required by fixed representations.


Author(s):  
Jinfa Shi ◽  
Misbah Habib ◽  
Hai Yan

<p class="0abstract">A Genetic algorithm is a search algorithm depends on the methodology of natural selection and natural genetics. A Mobile Ad hoc network (MANET) is a type of wireless nodes (Devices) which are free to move anywhere in the network without any constraints. The nodes which are in range can communicate each other through radio waves and those who are not in range use any routing algorithm for communication. In this review paper, we focus on the problems of MANET that has been solved by applying GA for it and highlights the characteristic and challenges of MANET in the literature. More specifically, we present the summary of review papers and basic solutions that use and in the last, we present some future direction. Consequently, we concluded that modification in Fitness function (Evaluation function) according to the problem is the base of Genetic algorithm and variation in algorithm parameters can give solutions in a reasonable time.</p>


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 115
Author(s):  
Andriy Chaban ◽  
Marek Lis ◽  
Andrzej Szafraniec ◽  
Radoslaw Jedynak

Genetic algorithms are used to parameter identification of the model of oscillatory processes in complicated motion transmission of electric drives containing long elastic shafts as systems of distributed mechanical parameters. Shaft equations are generated on the basis of a modified Hamilton–Ostrogradski principle, which serves as the foundation to analyse the lumped parameter system and distributed parameter system. They serve to compute basic functions of analytical mechanics of velocity continuum and rotational angles of shaft elements. It is demonstrated that the application of the distributed parameter method to multi-mass rotational systems, that contain long elastic elements and complicated control systems, is not always possible. The genetic algorithm is applied to determine the coefficients of approximation the system of Rotational Transmission with Elastic Shaft by equivalent differential equations. The fitness function is determined as least-square error. The obtained results confirm that application of the genetic algorithms allow one to replace the use of a complicated distributed parameter model of mechanical system by a considerably simpler model, and to eliminate sophisticated calculation procedures and identification of boundary conditions for wave motion equations of long elastic elements.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1581
Author(s):  
Alfonso Hernández ◽  
Aitor Muñoyerro ◽  
Mónica Urízar ◽  
Enrique Amezua

In this paper, an optimization procedure for path generation synthesis of the slider-crank mechanism will be presented. The proposed approach is based on a hybrid strategy, mixing local and global optimization techniques. Regarding the local optimization scheme, based on the null gradient condition, a novel methodology to solve the resulting non-linear equations is developed. The solving procedure consists of decoupling two subsystems of equations which can be solved separately and following an iterative process. In relation to the global technique, a multi-start method based on a genetic algorithm is implemented. The fitness function incorporated in the genetic algorithm will take as arguments the set of dimensional parameters of the slider-crank mechanism. Several illustrative examples will prove the validity of the proposed optimization methodology, in some cases achieving an even better result compared to mechanisms with a higher number of dimensional parameters, such as the four-bar mechanism or the Watt’s mechanism.


Sign in / Sign up

Export Citation Format

Share Document