Design of high gain low power operational amplifier

Author(s):  
Tripti Kackar ◽  
Shruti Suman ◽  
P. K. Ghosh
Author(s):  
A. Jeevan Kumar ◽  
K. Lokesh Krishna ◽  
K. Abhinav Viswateja ◽  
K. Gopi ◽  
S. Mohan Rao ◽  
...  

2021 ◽  
Author(s):  
Elyes Balti

Operational amplifier is considered as the core of the analog building blocks. High performance opamp must exhibit high gain, wide bandwidth, low power consumption and rail-to-rail output swings. In this work, we propose to design a fully-differential opamp design to satisfy certain design requirements and specifications.


2021 ◽  
Author(s):  
I.T Shruthi ◽  
Shreelekha Panchal ◽  
Sarita Uniyal ◽  
Dr. Shashidhar Tantry

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Na Bai ◽  
Xiaolong Li ◽  
Yaohua Xu

Based on the SMIC 0.13 um CMOS technology, this paper uses a 0.8 V supply voltage to design a low-voltage, ultra-low-power, high-gain, two-stage, fully differential operational amplifier. Through the simulation analysis, when the supply voltage is 0.8 V, the design circuit meets the ultra-low power consumption and also has the characteristic of high gain. The five-tube, fully differential, and common-source amplifier circuits provide the operational amplifier with high gain and large swing. Unlike the traditional common-mode feedback, this paper uses the output of the common-mode feedback as the bias voltage of the five-tube operational transconductance amplifier load, which reduces the design cost of the circuit; the structure involves self-cascoding composite MOS, which makes the common-mode feedback loop more sensitive. The frequency compensation circuit adopts Miller compensation technology with zero-pole separation, which increases the stability of the circuit. The input of the circuit uses the current mirror. A small reference current is chosen to reduce power consumption. A detailed performance simulation analysis of this operational amplifier circuit is carried out on the Cadence spectre platform. The open-loop gain of this operational amplifier is 74.1 dB, the phase margin is 61°, the output swing is 0.7 V, the common-mode rejection ratio is 109 dB, and the static power consumption is only 11.2 uW.


Sign in / Sign up

Export Citation Format

Share Document