scholarly journals Fully-Differential Opamp Design

2021 ◽  
Author(s):  
Elyes Balti

Operational amplifier is considered as the core of the analog building blocks. High performance opamp must exhibit high gain, wide bandwidth, low power consumption and rail-to-rail output swings. In this work, we propose to design a fully-differential opamp design to satisfy certain design requirements and specifications.

Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


2013 ◽  
Vol 6 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Andrea Malignaggi ◽  
Amin Hamidian ◽  
Georg Boeck

The present paper presents a fully differential 60 GHz four stages low-noise amplifier for wireless applications. The amplifier has been optimized for low-noise, high-gain, and low-power consumption, and implemented in a 90 nm low-power CMOS technology. Matching and common-mode rejection networks have been realized using shielded coplanar transmission lines. The amplifier achieves a peak small-signal gain of 21.3 dB and an average noise figure of 5.4 dB along with power consumption of 30 mW and occupying only 0.38 mm2pads included. The detailed design procedure and the achieved measurement results are presented in this work.


Nanoscale ◽  
2020 ◽  
Vol 12 (42) ◽  
pp. 21610-21616
Author(s):  
Dingwei Li ◽  
Momo Zhao ◽  
Kun Liang ◽  
Huihui Ren ◽  
Quantan Wu ◽  
...  

Flexible light weight In2O3-based source-gated transistors are achieved with high gain, fast saturation and low power consumption.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 177-179
Author(s):  
Langis Roy ◽  
Malcolm G. Stubbs ◽  
James S. Wight

The design and performance of a high-gain, monolithic, broadband amplifier with extremely low power consumption are described. The amplifier, fabricated using a 0.5 μm GaAs depletion-mode MESFET (metal semiconductor field effect transistor) process, utilizes very small gate width devices to achieve a measured gain of 19 dB and a 0.1 to 2.1 GHz bandwidth with only 63 mW dc power dissipation. This is the lowest power consumption broadband MMIC (monolithic microwave integrated circuit) reported to date and is intended for mobile radio applications.


2013 ◽  
Vol 22 (10) ◽  
pp. 1340033 ◽  
Author(s):  
HONGLIANG ZHAO ◽  
YIQIANG ZHAO ◽  
YIWEI SONG ◽  
JUN LIAO ◽  
JUNFENG GENG

A low power readout integrated circuit (ROIC) for 512 × 512 cooled infrared focal plane array (IRFPA) is presented. A capacitive trans-impedance amplifier (CTIA) with high gain cascode amplifier and inherent correlated double sampling (CDS) configuration is employed to achieve a high performance readout interface for the IRFPA with a pixel size of 30 × 30 μm2. By optimizing column readout timing and using two operating modes in column amplifiers, the power consumption is significantly reduced. The readout chip is implemented in a standard 0.35 μm 2P4M CMOS technology. The measurement results show the proposed ROIC achieves a readout rate of 10 MHz with 70 mW power consumption under 3.3 V supply voltage from 77 K to 150 K operating temperature. And it occupies a chip area of 18.4 × 17.5 mm2.


2014 ◽  
Vol 556-562 ◽  
pp. 2577-2580
Author(s):  
Xin You Li ◽  
Ze Bin Xu ◽  
Jin Xu Guo

Along with an increasingly wide utilization in the fields of ETC application, it becomes more and more important to measuring quickly and accurately on the key equipment of ETC system, such as OBU and RSU. This article is based on the measuring requirement of ETC system and propose a new design proposal by selecting STR715FR0 chip base on the core of ARM7TDMI series and 5.8GHz radio frequency transceiver circuit, the actual operation and test results show that the DSRC device Measuring Instrument works with stability, reliability and low power consumption, which enables convenient and efficient measuring to ensure the reliability and consistency of the ETC key equipment.


2013 ◽  
Vol 333-335 ◽  
pp. 2412-2416
Author(s):  
Jin Feng Yan ◽  
Ming Deng ◽  
Yan Jun Li ◽  
Qi Sheng Zhang

SoPC technology is a high-performance, low-power consumption embedded system solution based on embedded microprocessor, providing a new way for developing new type centralized engineering seismograph. The paper presents the development of a new type centralized engineering seismograph based on SoPC technology, which adopts FPGA design based on SoPC technology for the hardware design and embedded software program development of the 48-channel engineering seismograph. According to actual needs of currently available centralized engineering seismograph, combining the actual characteristics of SoPC embedded technology, a portable, low-power consumption and high-performance new type centralized engineering seismograph is constructed. The paper describes the hardware design and software program implementation of the centralized engineering seismograph in detail.


2011 ◽  
Vol 58-60 ◽  
pp. 680-684
Author(s):  
Xiao Li Wang

Along with electronics technique of development rapidly, SCM has become essential tool to the development of modern electronic technology. This paper introduces the core of ATmega16L-8PC microcontroller, and the MAX485 with low-power transceiver for the system of products counting on the production line system. The system is highly integrated, strongly stable and low power consumption, very convenient use and maintenance, with high Cost effective and practical value.


Sign in / Sign up

Export Citation Format

Share Document