PLC-based SCADA system for oil storage and application

Author(s):  
Wang Xibin ◽  
Li Guohong ◽  
Wei Xuejie
Keyword(s):  
Neft i gaz ◽  
2020 ◽  
Vol 1 (121) ◽  
pp. 77-85
Author(s):  
N. A. ABILDAEV ◽  
◽  
N. O. ABDRAIMOVA ◽  
A. B. DEMEUOVA ◽  
◽  
...  

Currently, the task of modernizing the automated control of the technological process of accounting, storage and transportation of petroleum products is becoming urgent at oil pumping facilities. Modern automatic process control systems require constant updating of equipment, software and technical support. As production and supply cycles become shorter and require greater flexibility, real-time data exchange on operational capacity and conditions for planning and forecasting production and operational operations becomes an important factor in the company's bottom line. The modern open platform of the SCADA system allows you to create links between the operational and information areas of engineering. In this regard, the use of SCADA technologies is the most promising method of automated control of production processes in terms of process visualization, safety and reliability


Author(s):  
Vitaly М. Goritsky ◽  
◽  
Georgy R. Shneyderov ◽  
Eugeny P. Studenov ◽  
Olga A. Zadubrovskaya ◽  
...  

Determination of causes of crack-like defects in the heavy plate steel 09Г2С is a crucial task, the solution of which is aimed at improving the mechanical safety of oil storage steel vertical tanks. In order to determine the causes for the formation of a group of crack-like defects oriented towards rolling, revealed during grinding and magnetic inspection of the tank wall surface near the vertical weld, the analysis of the chemical composition and testing of the mechanical properties of heavy plate steel were carried out, including the determination of the anisotropy of impact toughness in the temperature range from +20 to –75 °С, analysis of metal microstructure in the area of defect formation on transversal sections and rolled surface. Impact bending tests of 09Г2С heavy plate steel after controlled rolling in longitudinal and transverse directions showed no anisotropy of impact toughness, as well as high purity of steel as for sulfur and titanium, which at higher content causes impact toughness anisotropy. The revealed features of metal microstructure near the defects made it possible to conclude that the crack-like defects were formed during the rolling of gas bubbles at the stage of preparing semi-finished rolled products for finishing rolling. One of the possible methods to prevent such defects from getting into finished rolled products is the use of automated systems of visual inspection of rolled products in the manufacturing process.


2021 ◽  
Vol 13 (9) ◽  
pp. 4950
Author(s):  
Stelian Brad ◽  
Mircea Murar ◽  
Grigore Vlad ◽  
Emilia Brad ◽  
Mariuța Popanton

Capacity to remotely monitor and control systems for waste-water treatment and to provide real time and trustworthy data of system’s behavior to various stakeholders is of high relevance. SCADA systems are used to undertake this job. SCADA solutions are usually conceptualized and designed with a major focus on technological integrability and functionality. Very little contributions are brought to optimize these systems with respect to a mix of target functions, especially considering a lifecycle perspective. In this paper, we propose a structured methodology for optimizing SCADA systems from a lifecycle perspective for the specific case of waste-water treatment units. The methodology embeds techniques for handling entropy in the design process and to assist engineers in designing effective solutions in a space with multiple constrains and conflicts. Evolutionary multiple optimization algorithms are used to handle this challenge. After the foundation of the theoretical model calibrated for the specific case of waste-water treatment units, a practical example illustrates its applicability. It is shown how the model can lead to a disruptive solution, which integrates cloud computing, IoT, and data analytics in the SCADA system, with some competitive advantages in terms of flexibility, cost effectiveness, and increased value added for both integrators and beneficiaries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tuan Ngoc Nguyen ◽  
Andre Rangel ◽  
David W. Grainger ◽  
Véronique Migonney

AbstractPolyethylene terephthalate (PET) fibers and fabrics are widely used for medical device applications such as vascular and anterior cruciate ligament prostheses. Several years ago, we began functionalizing PET fabrics using anionic polymers to enhance their biocompatibility, cell adhesion, proliferation and functional performance as PET ligament prostheses. Polymer functionalization followed a grafting-from process from virgin PET surfaces subject to spin-finish oil additive removal under Soxhlet extraction to remove residual fiber manufacturing oil. Nevertheless, with increasing time from manufacture, PET fabrics stored without a spin finish removal step exhibited degradation of spin finish oil, leading to (1) incomplete surface cleaning, and (2) PET surface degradation. Moreover, oxidizing agents present in the residual degraded oil prevented reliable functionalization of the prosthesis fibers in these PET fabrics. This study compares effects of PET fabric/spin finish oil storage on PET fabric anionic polymer functionalization across two PET fabric ligament storage groups: (1) 2- and 10- year old ligaments, and (2) 26-year old ligaments. Strong interactions between degraded spin finish oil and PET fiber surfaces after long storage times were demonstrated via extraction yield; oil chemistry changed assessed by spectral analysis. Polymer grafting/functionalization efficiency on stored PET fabrics was correlated using atomic force microscopy, including fiber surface roughness and relationships between grafting degree and surface Young’s modulus. New PET fabric Young’s modulus significantly decreased by anionic polymer functionalization (to 96%, grafting degree 1.6 µmol/g) and to reduced modulus and efficiency (29%) for 10 years storage fabric (grafting degree ~ 1 µmol/g). As fiber spin finish is mandatory in biomedically applicable fiber fabrication, assessing effects of spin finish oil on commercial polymer fabrics after longer storage under various conditions (UV light, temperature) is necessary to understand possible impacts on fiber degradation and surface functionalization.


2021 ◽  
Vol 11 (6) ◽  
pp. 2521
Author(s):  
Feng Jiang ◽  
Jianyong Liu ◽  
Wei Yuan ◽  
Jianbo Yan ◽  
Lin Wang ◽  
...  

Improving the fire resistance of the key cables connected to firefighting and safety equipment is of great importance. Based on the engineering practice of an oil storage company, this study proposes a modification scheme that entails spraying fire-retardant coatings on the outer surface of a cable tray to delay the failure times of the cables in the tray. To verify the effect, 12 specimens were processed using five kinds of fire-retardant coatings and two kinds of fire-resistant cotton to coat the cable tray. The specimens were installed in the vertical fire resistance test furnace. For the ISO 834 standard fire condition, a fire resistance test was carried out on the specimens. The data for the surface temperature and the insulation resistance of the cables in trays were collected, and the fireproof effect was analyzed. The results showed that compared with the control group, the failure time of the cable could be delayed by 1.57–14.86 times, and the thicker the fire-retardant coatings were, the better the fireproof effect was. In general, the fire protection effect of the fire-retardant coating was better than that of the fire-resistant cotton.


Sign in / Sign up

Export Citation Format

Share Document