A Novel Miniature Conical Conformal Beidou antenna for High-shock Projectile Applications

Author(s):  
Meijun Qu ◽  
Chengxiang Xu ◽  
Siyang Sun
Keyword(s):  
Alloy Digest ◽  
1966 ◽  
Vol 15 (12) ◽  

Abstract SIMOCH is a low alloy tool steel having high shock resistance, high impact strength and excellent wear resistance. It is recommended for many hot work and cold work applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-186. Producer or source: Teledyne Vasco.


Alloy Digest ◽  
1996 ◽  
Vol 45 (7) ◽  

Abstract Crucible S7 is a chromium/molybdenum tool steel developed to produce the unusual combination of high shock resistance and toughness together with ease of machining and heat treatment. It is a versatile tool steel applicable for both hot and cold work shock applications. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on heat treating, machining, and joining. Filing Code: TS-543. Producer or source: Crucible Service Centers.


Author(s):  
O. B. Berdnik ◽  
I. N. Tsareva ◽  
L. A. Krivina ◽  
S. V. Kirikov ◽  
S. I. Gerasimov ◽  
...  

When conducting impact tests of protective glasses, nonunique cases of destruction of balls made of bearing steel ShKh15 were recorded. The causes of their destruction were determined. The state of the material was studied by fractographic and metallographic analysis, hardness and microhardness measurement. In the structure of the metal of all the balls, no critical defects were found such as flockens, shells and microcracks, but adverse factors were detected in the microstructure of the material, namely, the presence of fineneedle martensite with excessive carbides. It is established that the detected structural factors lead to liability to brittle fracture, an increase in the hardness of the material, a decrease in plasticity. To prevent brittle fracture of the balls and provide a reserve of plasticity of steel ShKh15 at high shock loads assessment calculations of ductility coefficient were made; and it was recommended to limit the maximum hardness of the material critical value HV=5.70 HPa (54 HRC), with the corresponding plasticity coefficient equal to 0.8.


Author(s):  
A. G. Wright

Magnetic fields, with a magnitude comparable with that of the earth (10−4 tesla), affect trajectories of electrons and hence gain and collection efficiency. The inclusion of a high-permeability shield usually offers sufficient protection. Photomultiplier (PMT) performance is affected by electric field gradients generated by the proximity of a metal housing. The design criteria of such housings are discussed. Strong magnetic fields of the order of a tesla require special devices. Operation in harsh environments such as those encountered in oil well logging requires performance at high temperature (200 °C) and in situations of high shock and vibration expressed in terms of power spectral density. Rugged PMTs can meet all these requirements. Applications at cryogenic temperatures, such as liquid argon, can also be met with special PMTs.


2011 ◽  
Vol 148-149 ◽  
pp. 388-392
Author(s):  
Jie Du ◽  
Chun Ting Ma

Based on Interaction energy of solid ball, the new particle damper is designed which can be used in a high temperature and high shock energy. To verify the design of the damper, a falling weight Impact test rig is designed, a sensor, data acquisition card and computer hardware constitutes a signal test system. Experimental results show that the particle diameter is the biggest impact for the role of the particle damper , the characteristics of the displacement curves are increased at first and then decreased, the opposite effect of the time. At the same time filled with particles and the degree of damping rod embedment also have an impact on energy consumption.


1990 ◽  
Author(s):  
D. Haynes ◽  
M. Corke ◽  
D. W. Stowe ◽  
J. Vigeant
Keyword(s):  

2007 ◽  
Vol 129 (03) ◽  
pp. 24-29 ◽  
Author(s):  
Arthur C. Ratzel

This article discusses growing role of silicon micro-electron-mechanical systems (MEMS) technology in automotive and consumer products, telecommunications, radio-frequency applications, and medical care. The article also highlights that silicon-based MEMS devices must be constructed in clean rooms, such as one at Sandia's Microelectronics Development laboratory. According to engineers, the search for an in-depth understanding of wear mechanisms in dynamic silicon MEMS is expected to drive an ambitious wave of leading-edge research into microscale science and engineering, distinct from that which prevailed at the mesoscale. It has been found that gas damping between MEMS structures and the substrate, within the sealed package, can cause serious nonlinearities. While this doesn't lead to failure in the classic sense, it may make it harder to close a switch. On the plus side, gas damping can provide a cushion that enables a MEMS device to survive surprisingly high shock loads.


Sensors ◽  
2018 ◽  
Vol 18 (4) ◽  
pp. 1037 ◽  
Author(s):  
Yang Gao ◽  
Libin Huang ◽  
Xukai Ding ◽  
Hongsheng Li

Sign in / Sign up

Export Citation Format

Share Document