Fault-tolerance control method for open-winding multi-disc motor system

Author(s):  
Huan Zhang ◽  
Cheng Luo ◽  
Lixun Tang ◽  
Guoliang Xiao ◽  
Wenyi Tu ◽  
...  

Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 167 ◽  
Author(s):  
Jin-Wook Kang ◽  
Seung-Wook Hyun ◽  
Jae-Ok Ha ◽  
Chung-Yuen Won

This paper investigates the fault-tolerance control of a multilevel cascaded NPC/H-bridge (CNHB) inverter. The fault-tolerance control method has been widely used for multilevel inverters, such as the neutral-point voltage-shifting control, which can operate for a certain period of time by compensating for the phase voltage of a faulty stack even if one stack is broken. Even though the three-phase equilibrium is maintained in the case of failure by using the conventional neutral-point voltage-shifting control, an imbalance in the output power occurs between each stack, which causes problems for maintenance and lifetime. Therefore, this paper proposes a fault-tolerance control that can maintain three-phase equilibrium in a case of stack failures and minimize power imbalances between the stacks. The problem of the conventional neutral-point voltage-shifting control is presented based on the output power. In addition, the power imbalance is improved by performing selective neutral-point voltage-shifting control according to the reference voltage range. To verify the principle and feasibility of the proposed neutral-point voltage-shifting control method, a simulation and an experiment are implemented with the CNHB inverter.



Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 176
Author(s):  
Zhaoying Li ◽  
Shuai Shi

This paper investigates the fault tolerance control of hypersonic aircrafts with L1 adaptive control method in the presence of loss of actuator effectiveness fault. The hypersonic model considers the uncertainties caused by the features of nonlinearities and couplings. Elasticity is taken into account in hypersonic vehicle modeling which makes the model more accurate. A velocity L1 adaptive controller and an altitude L1 adaptive controller are designed to control flexible hypersonic vehicle model with actuator loss fault. A PID controller is designed as well for comparison. Finally, the simulation results are used to analyze the effectiveness of the controller. Compared to the results of PID controller, L1 controllers have better performance.



2021 ◽  
Author(s):  
Tao Peng ◽  
Yansong Xu ◽  
Hongwei Tao ◽  
Zhiwen Chen ◽  
Xinyu Fan


2021 ◽  
Vol 11 (5) ◽  
pp. 2396
Author(s):  
Jong Suk Lim ◽  
Hyung-Woo Lee

This paper presents a method of utilizing a non-contact position sensor for the tilting and movement control of a rotor in a rotary magnetic levitation motor system. This system has been studied with the aim of having a relatively simple and highly clean alternative application compared to the spin coater used in the photoresist coating process in the semiconductor wafer process. To eliminate system wear and dust problems, a shaft-and-bearing-free magnetic levitation motor system was designed and a minimal non-contact position sensor was placed. An algorithm capable of preventing derailment and precise movement control by applying only control without additional mechanical devices to this magnetic levitation system was proposed. The proposed algorithm was verified through simulations and experiments, and the validity of the algorithm was verified by deriving a precision control result suitable for the movement control command in units of 0.1 mm at 50 rpm rotation drive.



Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 876 ◽  
Author(s):  
Qinyue Zhu ◽  
Wei Dai ◽  
Lei Guan ◽  
Xitang Tan ◽  
Zhaoyang Li ◽  
...  

In view of the complex calculation and limited fault tolerance capability of existing neutral point shift control algorithms, this paper studies the fault-tolerant control method for sub-module faults in modular multilevel converters on the basis of neutral point compound shift control strategy. In order to reduce the calculation complexity of shift parameters in the traditional strategy and simplify its implementation, an improved AC side phase voltage vector reconstruction method is proposed, achieving online real-time calculation of the modulation wave adjustment parameters of each phase required for fault-tolerant control. Based on this, a neutral point DC side shift control method is proposed to further improve the fault tolerance capability of the modular multilevel converter (MMC) system by compensating the fault phase voltage with non-fault phase voltage. By means of the compound shift control strategy of the DC side and AC side of the neutral point, an optimal neutral point position is selected to ensure that the MMC system output line voltage is symmetrical and the amplitude is as large as possible after fault-tolerant control. Finally, the effectiveness and feasibility of the proposed control strategy are verified by simulation and low-power MMC experimental system testing.



2010 ◽  
Vol 35 (22) ◽  
pp. 12510-12520 ◽  
Author(s):  
Liangfei Xu ◽  
Jianqiu Li ◽  
Minggao Ouyang ◽  
Jianfeng Hua ◽  
Xiangjun Li


Sign in / Sign up

Export Citation Format

Share Document