DC-link Voltage Sliding Mode Control of Z-source Inverter for High Speed Permanent Magnet Motors

Author(s):  
Haokun Wu ◽  
Keyuan Huang ◽  
Wei Lv ◽  
Xiaoling Mo ◽  
Shoudao Huang ◽  
...  
Author(s):  
Ifeanyi Chinaeke-Ogbuka ◽  
Augustine Ajibo ◽  
Kenneth Odo ◽  
Uche Ogbuefi ◽  
Muncho Mbunwe ◽  
...  

A robust high-speed sliding mode control (SMC) of three phase permanent magnet synchronous motor (PMSM) is presented. The SMC served for inner speed control while a simplified hysteresis current control (HCC) scheme was used in the outer current control to generate gating signals for the inverter switches. The present research leverages on the ability of SMC to directly access system speed error which it attempts driving to zero by cancelling modelling uncertainties and disturbances. Performance comparison was done for the SMC model and an existing model having classical PI controller. With the initial positive speed command of 200 rpm at 5 Nm constant loading, rotor speed with SMC neatly settled to the reference speed at 0.085 seconds without overshoot while the rotor speed of the model with PI controller settled at 0.217 seconds after overshoot. This translates to 155.3% speed enhancement. Similar superior speed performance of the SMC was also observed during recovering from sudden speed reversal. While the SMC model recovered and settled to the reference speed of -200 rpm at 0.369 seconds, the model with PI controller settled at 0.482 seconds. From the results, it can be seen that SMC demonstared superiority over the conventioanl PI controller for complex drives systems.


2021 ◽  
Vol 54 (3-4) ◽  
pp. 360-373
Author(s):  
Hong Wang ◽  
Mingqin Zhang ◽  
Ruijun Zhang ◽  
Lixin Liu

In order to effectively suppress horizontal vibration of the ultra-high-speed elevator car system. Firstly, considering the nonlinearity of guide shoe, parameter uncertainties, and uncertain external disturbances of the elevator car system, a more practical active control model for horizontal vibration of the 4-DOF ultra-high-speed elevator car system is constructed and the rationality of the established model is verified by real elevator experiment. Secondly, a predictive sliding mode controller based on adaptive fuzzy (PSMC-AF) is proposed to reduce the horizontal vibration of the car system, the predictive sliding mode control law is achieved by optimizing the predictive sliding mode performance index. Simultaneously, in order to decrease the influence of uncertainty of the car system, a fuzzy logic system (FLS) is designed to approximate the compound uncertain disturbance term (CUDT) on-line. Furthermore, the continuous smooth hyperbolic tangent function (HTF) is introduced into the sliding mode switching term to compensate the fuzzy approximation error. The adaptive laws are designed to estimate the error gain and slope parameter, so as to increase the robustness of the system. Finally, numerical simulations are conducted on some representative guide rail excitations and the results are compared to the existing solution and passive system. The analysis has confirmed the effectiveness and robustness of the proposed control method.


Author(s):  
Peikun Zhu ◽  
Yong Chen ◽  
Meng Li

Aiming at the parameter uncertainty and load torque disturbance of permanent magnet synchronous motor system, a terminal sliding mode control algorithm for permanent magnet synchronous motor based on the reaching law is proposed. First, a sliding mode control algorithm for sliding mode reaching law is proposed, which can dynamically adapt to the changes in system state. Second, a sliding mode disturbance observer is designed to estimate the lumped disturbance in real time and to compensate the controller for disturbance. On this basis, an online identification method based on disturbance observer for viscous friction coefficient and moment of inertia is used to reduce the influence of parameter uncertainty on the control system. Simulation and experimental results show the effectiveness of the method.


2011 ◽  
Vol 66-68 ◽  
pp. 1422-1427
Author(s):  
Ting You ◽  
Pei Jiang Li

For optimal control of synchronous machine, chattering phenomenon will appear if traditional slider control is adopted because permanent magnet synchronous machine is a complex nonlinear time-dependent system with strong coupling of current and rotational speed to cause the deterioration of system control performance with load or load disturbance. In this article, based on the mathematical model of permanent magnet synchronous machine, a control system for it, which combines sliding mode control and active disturbance rejection control, is proposed to improve the dynamic performance and robustness of control system. In the control system, sliding mode control is adopted to control the inner current of machine and active disturbance rejection control is adopted to control the outer speed. The load disturbance of system is also estimated and offset. The results of matlab simulation show that the control system can eliminate serious chattering phenomenon existing in sliding mode control, improves the robustness of system for load and system parameter disturbance as well as has great dynamic and static performance.


Sign in / Sign up

Export Citation Format

Share Document