A Dual-band SIR Monopole Conformal Antenna for NB-IoT and WLAN Application

Author(s):  
Jiuhuai Lei ◽  
Shaoci Pan ◽  
Dao Yao ◽  
Guangli Chen
Keyword(s):  
Author(s):  
Rajeswari P ◽  
Gobinath A ◽  
Deebiga B ◽  
Gnanasundari S

The conformal antenna consisting two loop elements is presented at 2.45 GHz industrial, scientific and medical band. The two elements are attached on the inner surface of the capsule, so that inner capsule space is saved to its maximum extent. Additionally, by orthogonally placing the two elements at bottom and side of the capsule, different polarization directions are achieved; therefore, resulting in good isolation without introducing additional decoupling structures. This system has the potential to provide real-time biological information from within the human body via a radio frequency link. Furthermore, communication link of the conformal antenna with outside dipole is evaluated, revealing reliable communication performance. The performance of the communication link between the implanted antenna and external half-wavelength dual-band dipole is also examined.


Author(s):  
Amin Rida ◽  
George Shaker ◽  
Farzad Nasri ◽  
Trevale Reynolds ◽  
Symeon Nikolaou ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5087
Author(s):  
Zelong Hu ◽  
Zhuohua Xiao ◽  
Shaoqiu Jiang ◽  
Rongguo Song ◽  
Daping He

Flexible electronic devices are widely used in the Internet of Things, smart home and wearable devices, especially in carriers with irregular curved surfaces. Light weight, flexible and corrosion-resistant carbon-based materials have been extensively investigated in RF electronics. However, the insufficient electrical conductivity limits their further application. In this work, a flexible and low-profile dual-band Vivaldi antenna based on highly conductive graphene-assembled films (GAF) is proposed for 5G Wi-Fi applications. The proposed GAF antenna with the profile of 0.548 mm comprises a split ring resonator and open circuit half wavelength resonator to implement the dual band-notched characteristic. The operating frequency of the flexible GAF antenna covers the Wi-Fi 6e band, 2.4–2.45 GHz and 5.15–7.1 GHz. Different conformal applications are simulated by attaching the antenna to the surface of cylinders with different radii. The measured results show that the working frequency bands and the radiation patterns of the GAF antenna are relatively stable, with a bending angle of 180°. For demonstration of practical application, the GAF antennas are conformed to a commercial router. The spectral power of the GAF antenna router is greater than the copper antenna router, which means a higher signal-to-noise ratio and a longer transmission range can be achieved. All results indicate that the proposed GAF antenna has broad application prospects in next generation Wi-Fi.


Author(s):  
Denys Nikolayev ◽  
Anja K. Skrivervik ◽  
John S. Ho ◽  
Maxim Zhadobov ◽  
Ronan Sauleau

Author(s):  
Barbara Trask ◽  
Susan Allen ◽  
Anne Bergmann ◽  
Mari Christensen ◽  
Anne Fertitta ◽  
...  

Using fluorescence in situ hybridization (FISH), the positions of DNA sequences can be discretely marked with a fluorescent spot. The efficiency of marking DNA sequences of the size cloned in cosmids is 90-95%, and the fluorescent spots produced after FISH are ≈0.3 μm in diameter. Sites of two sequences can be distinguished using two-color FISH. Different reporter molecules, such as biotin or digoxigenin, are incorporated into DNA sequence probes by nick translation. These reporter molecules are labeled after hybridization with different fluorochromes, e.g., FITC and Texas Red. The development of dual band pass filters (Chromatechnology) allows these fluorochromes to be photographed simultaneously without registration shift.


2002 ◽  
Vol 149 (1) ◽  
pp. 41-44 ◽  
Author(s):  
L. Economou ◽  
R.J. Langley
Keyword(s):  

2020 ◽  
Vol 91 (3) ◽  
pp. 30901
Author(s):  
Yibo Tang ◽  
Longhui He ◽  
Jianming Xu ◽  
Hailang He ◽  
Yuhan Li ◽  
...  

A dual-band microwave metamaterial absorber with single-peak regulation and wide-angle absorption has been proposed and illustrated. The designed metamaterial absorber is consisted of hollow-cross resonators, solid-cross resonators, dielectric substrate and metallic background plane. Strong absorption peak coefficients of 99.92% and 99.55% are achieved at 8.42 and 11.31 GHz, respectively, which is basically consistent with the experimental results. Surface current density and changing material properties are employed to illustrate the absorptive mechanism. More importantly, the proposed dual-band metamaterial absorber has the adjustable property of single absorption peak and could operate well at wide incidence angles for both transverse electric (TE) and transverse magnetic (TM) waves. Research results could provide and enrich instructive guidances for realizing a single-peak-regulation and wide-angle dual-band metamaterial absorber.


Sign in / Sign up

Export Citation Format

Share Document