Design of Multiband Conformal Loop Antenna for Telemetry Applications

Author(s):  
Rajeswari P ◽  
Gobinath A ◽  
Deebiga B ◽  
Gnanasundari S

The conformal antenna consisting two loop elements is presented at 2.45 GHz industrial, scientific and medical band. The two elements are attached on the inner surface of the capsule, so that inner capsule space is saved to its maximum extent. Additionally, by orthogonally placing the two elements at bottom and side of the capsule, different polarization directions are achieved; therefore, resulting in good isolation without introducing additional decoupling structures. This system has the potential to provide real-time biological information from within the human body via a radio frequency link. Furthermore, communication link of the conformal antenna with outside dipole is evaluated, revealing reliable communication performance. The performance of the communication link between the implanted antenna and external half-wavelength dual-band dipole is also examined.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1431
Author(s):  
Ilkyu Kim ◽  
Sun-Gyu Lee ◽  
Yong-Hyun Nam ◽  
Jeong-Hae Lee

The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient’s vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body.


2008 ◽  
Vol 05 (01) ◽  
pp. 65-82 ◽  
Author(s):  
LISHENG XU ◽  
MAX Q.-H. MENG ◽  
HONGLIANG REN

In this paper, the radiation characteristics with respect to the suitability of using homogeneous phantom for testing the compliance of radiation frequency devices are assessed. The Finite-Difference Time-Domain (FDTD) method is applied to analyze the variations of a 900 MHz half-wavelength dipole antenna's biological effects and link performance depending on distance between antenna and human body model. The distance between the surface of the model and the outside exposure source is changed from 25 mm to 1 mm within the range of λ/2π. The distributions of the specific absorption rates (SARs) and the electric fields for various vertical slices of a simplified homogeneous phantom and three anatomical human body trunk models are calculated, respectively. The legs and head have little influence on the radiation characteristics of body-worn, ingestible or implantable wireless devices. The results demonstrate that a homogenous representation of human body is suited for assessing the averaged SARs in human body and confirm that the local energy absorption details and communication link performance need to be analyzed by using the anatomical models or by combining with the worst-case consideration.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jinpil Tak ◽  
Kyeol Kwon ◽  
Sunwoo Kim ◽  
Jaehoon Choi

A dual-band on-body repeater antenna for in-on-on wireless body area network applications is proposed. The proposed antenna has a maximum radiation normal to the human-body surface for communication with implanted devices in the 5.8 GHz industrial, scientific, and medical (ISM) band. In addition, to transmit the biological information received from the implanted devices to other on-body devices, the proposed antenna was designed to have a monopole-like radiation pattern along the surface of the human body for communication in the 2.45 GHz ISM band. The antenna was fabricated, and its performance was measured by attaching it to a human-equivalent semisolid phantom. In addition, the human-body effect was studied to ensure antenna performance under an actual situation.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5087
Author(s):  
Zelong Hu ◽  
Zhuohua Xiao ◽  
Shaoqiu Jiang ◽  
Rongguo Song ◽  
Daping He

Flexible electronic devices are widely used in the Internet of Things, smart home and wearable devices, especially in carriers with irregular curved surfaces. Light weight, flexible and corrosion-resistant carbon-based materials have been extensively investigated in RF electronics. However, the insufficient electrical conductivity limits their further application. In this work, a flexible and low-profile dual-band Vivaldi antenna based on highly conductive graphene-assembled films (GAF) is proposed for 5G Wi-Fi applications. The proposed GAF antenna with the profile of 0.548 mm comprises a split ring resonator and open circuit half wavelength resonator to implement the dual band-notched characteristic. The operating frequency of the flexible GAF antenna covers the Wi-Fi 6e band, 2.4–2.45 GHz and 5.15–7.1 GHz. Different conformal applications are simulated by attaching the antenna to the surface of cylinders with different radii. The measured results show that the working frequency bands and the radiation patterns of the GAF antenna are relatively stable, with a bending angle of 180°. For demonstration of practical application, the GAF antennas are conformed to a commercial router. The spectral power of the GAF antenna router is greater than the copper antenna router, which means a higher signal-to-noise ratio and a longer transmission range can be achieved. All results indicate that the proposed GAF antenna has broad application prospects in next generation Wi-Fi.


2021 ◽  
Author(s):  
Hamza Ben Hamadi ◽  
said ghnimi ◽  
Lassaad Latrach ◽  
Philippe Benech ◽  
Ali Gharsallah

Abstract This paper presents the design, simulation and fabrication of a miniaturized wearable dual-band antenna on a semi-flex substrate; she is operable at 2.45/5.8 GHz for wireless local area network applications. The electrical and radiation characteristics of this proposed antenna were obtained by means of a technical of insertion of a slot to tune the operating frequencies. To study the impact of the electromagnetic radiation of the structure of the human body, it is necessary to minimize the back radiation towards the user. Therefore, in this work, a multi-band artificial magnetic conductor (AMC) was placed directly above a dual-band planar inverted F antenna to achieve a miniaturization with excellent radiation performance. The simulation results were designed and simulated using Studio commercial software (CST). A good agreement was achieved between the results of simulation and the experimental. The Comparison of measurement results indicates that the gain improved from 1,84 dB to 3,8 dB, in the lower band, and from 2,4 dB to 4,1 in the upper band, when the antenna is backed by the AMC plane. The front-to-back ratio of the AMC backed PIFA antenna was also enhanced. Then, to ensure that the proposed AMC is harmless to the human body, this prototype was placed on three-layer human tissue cubic model. It was observed that the through inclusion of plane AMC, the peak specific absorption rate (SAR) decreased to 1,45 and 1,1 W/kg at 2,45 and 5.8 GHz, respectively (a reduction of around 3,7 W/kg, compared with an antenna without (AMC).


2021 ◽  
Vol 87 (5) ◽  
pp. 363-373
Author(s):  
Long Chen ◽  
Bo Wu ◽  
Yao Zhao ◽  
Yuan Li

Real-time acquisition and analysis of three-dimensional (3D) human body kinematics are essential in many applications. In this paper, we present a real-time photogrammetric system consisting of a stereo pair of red-green-blue (RGB) cameras. The system incorporates a multi-threaded and graphics processing unit (GPU)-accelerated solution for real-time extraction of 3D human kinematics. A deep learning approach is adopted to automatically extract two-dimensional (2D) human body features, which are then converted to 3D features based on photogrammetric processing, including dense image matching and triangulation. The multi-threading scheme and GPU-acceleration enable real-time acquisition and monitoring of 3D human body kinematics. Experimental analysis verified that the system processing rate reached ∼18 frames per second. The effective detection distance reached 15 m, with a geometric accuracy of better than 1% of the distance within a range of 12 m. The real-time measurement accuracy for human body kinematics ranged from 0.8% to 7.5%. The results suggest that the proposed system is capable of real-time acquisition and monitoring of 3D human kinematics with favorable performance, showing great potential for various applications.


Sign in / Sign up

Export Citation Format

Share Document