A Fault Diagnosis Method for Power Transformers Based on Wavelet Neural Network and D-S Evidence Theory

Author(s):  
Chen Wei-gen ◽  
Liang Liu-ming ◽  
Du Lin ◽  
Liu Jun ◽  
Yue Yan-feng ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4017 ◽  
Author(s):  
Haikun Shang ◽  
Junyan Xu ◽  
Zitao Zheng ◽  
Bing Qi ◽  
Liwei Zhang

Power transformers are important equipment in power systems and their reliability directly concerns the safety of power networks. Dissolved gas analysis (DGA) has shown great potential for detecting the incipient fault of oil-filled power transformers. In order to solve the misdiagnosis problems of traditional fault diagnosis approaches, a novel fault diagnosis method based on hypersphere multiclass support vector machine (HMSVM) and Dempster–Shafer (D–S) Evidence Theory (DET) is proposed. Firstly, proper gas dissolved in oil is selected as the fault characteristic of power transformers. Secondly, HMSVM is employed to diagnose transformer fault with selected characteristics. Then, particle swarm optimization (PSO) is utilized for parameter optimization. Finally, DET is introduced to fuse three different fault diagnosis methods together, including HMSVM, hybrid immune algorithm (HIA), and kernel extreme learning machine (KELM). To avoid the high conflict between different evidences, in this paper, a weight coefficient is introduced for the correction of fusion results. Results indicate that the fault diagnosis based on HMSVM has the highest probability to identify transformer faults among three artificial intelligent approaches. In addition, the improved D–S evidence theory (IDET) combines the advantages of each diagnosis method and promotes fault diagnosis accuracy.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Yu Ding ◽  
Qiang Liu

A data-driven fault diagnosis method that combines Kriging model and neural network is presented and is further used for power transformers based on analysis of dissolved gases in oil. In order to improve modeling accuracy of Kriging model, a modified model that replaces the global model of Kriging model with BP neural network is presented and is further extended using linearity weighted aggregation method. The presented method integrates characteristics of the global approximation of the neural network technology and the localized departure of the Kriging model, which improves modeling accuracy. Finally, the validity of this method is demonstrated by several numerical computations of transformer fault diagnosis problems.


2014 ◽  
Vol 556-562 ◽  
pp. 2149-2152
Author(s):  
Cheng Cheng

BP neural network and evidence theory data fusion technology can be used in troubleshooting electronic equipment, from the simulation results show that the fault diagnosis method based on evidence theory and BP neural network can effectively diagnose faults in analog circuit, and it has automated intelligent characteristics.


2013 ◽  
Vol 307 ◽  
pp. 312-315 ◽  
Author(s):  
Wei Cong ◽  
Bo Jing ◽  
Hong Kun Yu

For the Difficulties in fault diagnosis of tolerance analog circuit, a Wavelet Neural Network (WNN) diagnosis method based on Particle Swarm Optimization (PSO) algorithm is proposed. To overcome the deficiencies of the traditional BP algorithm using in WNN, PSO algorithm is introduced into the parameters optimization in WNN, and the velocity disturbance operator is embedded to ensure the particle out of the premature position for PSO algorithm performance. The simulation results show that the proposed method has the fast training rate, accurate diagnosis, without local convergence.


2018 ◽  
Vol 37 (4) ◽  
pp. 977-986 ◽  
Author(s):  
Chen Huitao ◽  
Jing Shuangxi ◽  
Wang Xianhui ◽  
Wang Zhiyang

In order to monitor the wind turbine gearbox running state effectively, a fault diagnosis method of wind turbine gearbox is put forward based on wavelet neural network. Taking a 1.5 MW wind turbine gearbox as the target of study, the frequency spectrum of vibration signal and the fault mechanism of driving part are analyzed, and the eigenvalues of the frequency domain are extracted. A wavelet neural network model for fault diagnosis of wind turbine gearbox is established, and wavelet neural network is trained by using different feature vectors of fault types. The relationship between fault component and vibration signal is identified, and the vibration fault of wind turbine gearbox is predicted and diagnosed by network model. The analysis results show that the method can diagnose fault and fault pattern recognition of wind turbine gearbox very well.


2012 ◽  
Vol 472-475 ◽  
pp. 2166-2170
Author(s):  
Qun Qi ◽  
Xue Zhang Zhao

In order to better solve asynchronous motor complex fault characteristics, improve the reliability of the diagnosis and accuracy, combined with wavelet transform technique, construct a wavelet neural network, wavelet transform technology feature extraction asynchronous motor as a signal wavelet neural network's input vector, and the wavelet neural network algorithm was used to optimize, realize the motor identify types of fault, through the simulation experiment data diagnosis results show that this method is effective and feasible. Based on the wavelet analysis and neural network fault diagnosis method of research.


2012 ◽  
Vol 249-250 ◽  
pp. 400-404 ◽  
Author(s):  
Feng Lu ◽  
Tie Bin Zhu ◽  
Yi Qiu Lv

In order to improve diagnostic accuracy and reduce the rate of misdiagnosis to the aircraft engine gas path faulty, the methods based on data-driven and information fusion are developed and analyzed. BP neural network (NN) and RBF neural network based on data-driven single gas path fault diagnosis method is introduced firstly. Design gas path performance estimators and the fault type classification for turbo-shaft engine. Then the gas path fused diagnostic structure based on D-S evidence theory and least squares support vector machine are developed. Comparisons of the turbo-shaft engine gas path fault diagnosis verify the feasibility and effectiveness of the gas path fault diagnosis based on information fusion.


Sign in / Sign up

Export Citation Format

Share Document