A Novel Binarization Method to Remove Verdigris from Ancient Metal Image

Author(s):  
Bipin Nair B J ◽  
Unni Govind S ◽  
Nihad Abdulla V A ◽  
Akhil A
Keyword(s):  
2020 ◽  
Vol 64 (3) ◽  
pp. 30401-1-30401-14 ◽  
Author(s):  
Chih-Hsien Hsia ◽  
Ting-Yu Lin ◽  
Jen-Shiun Chiang

Abstract In recent years, the preservation of handwritten historical documents and scripts archived by digitized images has been gradually emphasized. However, the selection of different thicknesses of the paper for printing or writing is likely to make the content of the back page seep into the front page. In order to solve this, a cost-efficient document image system is proposed. In this system, the authors use Adaptive Directional Lifting-Based Discrete Wavelet Transform to transform image data from spatial domain to frequency domain and perform on high and low frequencies, respectively. For low frequencies, the authors use local threshold to remove most background information. For high frequencies, they use modified Least Mean Square training algorithm to produce a unique weighted mask and perform convolution on original frequency, respectively. Afterward, Inverse Adaptive Directional Lifting-Based Discrete Wavelet Transform is performed to reconstruct the four subband images to a resulting image with original size. Finally, a global binarization method, Otsu’s method, is applied to transform a gray scale image to a binary image as the output result. The results show that the difference in operation time of this work between a personal computer (PC) and Raspberry Pi is little. Therefore, the proposed cost-efficient document image system which performed on Raspberry Pi embedded platform has the same performance and obtains the same results as those performed on a PC.


2021 ◽  
Vol 310 ◽  
pp. 01002
Author(s):  
Dmitriy Otkupman ◽  
Sergey Bezdidko ◽  
Victoria Ostashenkova

The efficiency of using Zernike moments when working with digital images obtained in the infrared region of the spectrum is considered to improve the accuracy and speed of an autonomous thermal imaging system. The theoretical justification of the choice of Zernike moments for solving computer (machine) vision problems and the choice of a suitable threshold binarization method is given. In order to verify the adequacy and expediency of using the chosen method, practical studies were conducted on the use of Zernike methods for distorting various thermal images in shades of gray.


2011 ◽  
Vol 130-134 ◽  
pp. 4079-4083
Author(s):  
Jia Jia Li ◽  
Ke Liang Zhang ◽  
Gang Wei ◽  
Bai Feng Wu

It is a difficult task to binarize image under uneven illumination, and this problem is always met in the image recognition system, such as two-dimensional barcode scanning terminal. In this paper, an efficient approach is proposed to binarize image which can tolerant uneven illumination and different light intensity. The method initializes thresholds with local average gray level and adjusts thresholds by calculating light density ratio. Due to characteristic of our approach, it can even obtain a sound result by limiting number of iterations which will seriously reduce computations and space cost. According to experiments, we can find that our method can achieve a good performance and meet the real-time requirement and quality demand for barcode scanning terminal.


Author(s):  
Sitti Rachmawati Yahya ◽  
Siti Norul Huda Sheikh Abdullah ◽  
Khairuddin Omar ◽  
Choong-Yeun Liong
Keyword(s):  

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 507 ◽  
Author(s):  
José García ◽  
Paola Moraga ◽  
Matias Valenzuela ◽  
Hernan Pinto

This article proposes a hybrid algorithm that makes use of the db-scan unsupervised learning technique to obtain binary versions of continuous swarm intelligence algorithms. These binary versions are then applied to large instances of the well-known multidimensional knapsack problem. The contribution of the db-scan operator to the binarization process is systematically studied. For this, two random operators are built that serve as a baseline for comparison. Once the contribution is established, the db-scan operator is compared with two other binarization methods that have satisfactorily solved the multidimensional knapsack problem. The first method uses the unsupervised learning technique k-means as a binarization method. The second makes use of transfer functions as a mechanism to generate binary versions. The results show that the hybrid algorithm using db-scan produces more consistent results compared to transfer function (TF) and random operators.


Sign in / Sign up

Export Citation Format

Share Document