A Lightweight Dynamic Binarization Method for 2D Barcode Scanning Terminal

2011 ◽  
Vol 130-134 ◽  
pp. 4079-4083
Author(s):  
Jia Jia Li ◽  
Ke Liang Zhang ◽  
Gang Wei ◽  
Bai Feng Wu

It is a difficult task to binarize image under uneven illumination, and this problem is always met in the image recognition system, such as two-dimensional barcode scanning terminal. In this paper, an efficient approach is proposed to binarize image which can tolerant uneven illumination and different light intensity. The method initializes thresholds with local average gray level and adjusts thresholds by calculating light density ratio. Due to characteristic of our approach, it can even obtain a sound result by limiting number of iterations which will seriously reduce computations and space cost. According to experiments, we can find that our method can achieve a good performance and meet the real-time requirement and quality demand for barcode scanning terminal.

2021 ◽  
Vol 18 (2) ◽  
pp. 172988142199958
Author(s):  
Shundao Xie ◽  
Hong-Zhou Tan

In recent years, the application of two-dimensional (2D) barcode is more and more extensive and has been used as landmarks for robots to detect and peruse the information. However, it is hard to obtain a sharp 2D barcode image because of the moving robot, and the common solution is to deblur the blurry image before decoding the barcode. Image deblurring is an ill-posed problem, where ringing artifacts are commonly presented in the deblurred image, which causes the increase of decoding time and the limited improvement of decoding accuracy. In this article, a novel approach is proposed using blur-invariant shape and geometric features to make a blur-readable (BR) 2D barcode, which can be directly decoded even when seriously blurred. The finder patterns of BR code consist of two concentric rings and five disjoint disks, whose centroids form two triangles. The outer edges of the concentric rings can be regarded as blur-invariant shapes, which enable BR code to be quickly located even in a blurred image. The inner angles of the triangle are of blur-invariant geometric features, which can be used to store the format information of BR code. When suffering from severe defocus blur, the BR code can not only reduce the decoding time by skipping the deblurring process but also improve the decoding accuracy. With the defocus blur described by circular disk point-spread function, simulation results verify the performance of blur-invariant shape and the performance of BR code under blurred image situation.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jens Ziegle ◽  
Alfredo Illanes ◽  
Axel Boese ◽  
Michael Friebe

AbstractDuring thermal ablation in a target tissue the information about temperature is crucial for decision making of successful therapy. An observable temporal and spatial temperature propagation would give a visual feedback of irreversible cell damage of the target tissue. Potential temperature features in ultrasound (US) B-Mode image sequences during radiofrequency (RF) ablation in ex-vivo porcine liver were found and analysed. These features could help to detect the transition between reversible and irreversible damage of the ablated target tissue. Experimental RF ablations of ex-vivo porcine liver were imaged with US B-Mode imaging and image sequences were recorded. Temperature was simultaneously measured within the liver tissue around a bipolar RF needle electrode. In the B-Mode images, regions of interest (ROIs) around the centre of the measurement spots were analysed in post-processing using average gray-level (AVGL) compared against temperature. The pole of maximum energy level in the time-frequency domain of the AVGL changes was investigated in relation to the measured temperatures. Frequency shifts of the pole were observed which could be related to transitions between the states of tissue damage.


2020 ◽  
pp. 1-10
Author(s):  
Linlin Wang

With the continuous development of computer science and technology, symbol recognition systems may be converted from two-dimensional space to three-dimensional space. Therefore, this article mainly introduces the symbol recognition system based on 3D stereo vision. The three-dimensional image is taken by the visual coordinate measuring machine in two places on the left and right. Perform binocular stereo matching on the edge of the feature points of the two images. A corner detection algorithm combining SUSAN and Harris is used to detect the left and right camera calibration templates. The two-dimensional coordinate points of the object are determined by the image stereo matching module, and the three-dimensional discrete coordinate points of the object space can be obtained according to the transformation relationship between the image coordinates and the actual object coordinates. Then draw the three-dimensional model of the object through the three-dimensional drawing software. Experimental data shows that the logic resources and memory resources occupied by image preprocessing account for 30.4% and 27.4% of the entire system, respectively. The results show that the system can calibrate the internal and external parameters of the camera. In this way, the camera calibration result will be more accurate and the range will be wider. At the same time, it can effectively make up for the shortcomings of traditional modeling techniques to ensure the measurement accuracy of the detection system.


2014 ◽  
Vol 721 ◽  
pp. 783-787
Author(s):  
Shao Hu Peng ◽  
Hyun Do Nam ◽  
Yan Fen Gan ◽  
Xiao Hu

Automatic segmentation of the line-like regions plays a very important role in the automatic recognition system, such as automatic cracks recognition in X-ray images, automatic vessels segmentation in CT images. In order to automatically segment line-like regions in the X-ray/CT images, this paper presents a robust line filter based on the local gray level variation and multiscale analysis. The proposed line filter makes usage of the local gray level and its local variation to enhance line-like regions in the X-ray/CT image, which can well overcome the problems of the image noises and non-uniform intensity of the images. For detecting various sizes of line-like regions, an image pyramid is constructed based on different neighboring distances, which enables the proposed filter to analyze different sizes of regions independently. Experimental results showed that the proposed line filter can well segment various sizes of line-like regions in the X-ray/CT images, which are with image noises and non-uniform intensity problems.


Author(s):  
Michael Gritsch ◽  
Stefan Baldauf ◽  
Moritz Martiny ◽  
Achmed Schulz ◽  
Sigmar Wittig

The present paper reports on the use of the superposition approach in high density ratio film cooling flows. It arises from the linearity and homogeneity of the simplified boundary layer differential equations. However, it is widely assumed that the linearity does not hold for variable property flows. Therefore, theoretical considerations and numerical calculations will demonstrate the linearity of the heat transfer coefficient with the dimensionless coolant temperature θ as long as identical flow conditions are applied. This makes it necessary to perform at least two experiments at different θ but with the coolant to main flow temperature ratio kept unchanged. A comprehensive set of experiments is presented to demonstrate the capability of the superposition approach for determining heat transfer coefficients for different film cooling geometries. These comprise coolant injection from two dimensional tangential slots, single holes, and rows of cylindrical holes. Particularly, two dimensional local distributions of the heat transfer coefficient will be addressed.


Sign in / Sign up

Export Citation Format

Share Document