p-Cycle Protection without Wavelength Converters in Wavelength Division Multiplexing

Author(s):  
Vidhi Gupta ◽  
Rachna Asthana ◽  
Yatindra Nath Singh
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Utkarsh Shukla ◽  
Niraj Singhal ◽  
Rajiv Srivastava

Abstract Due to the evolution of data centric applications demand for high speed data transfer and more bandwidth is increasing continuously. The unavailability of components like tunable wavelength converters (TWCs) restrict the transfer of parallel information using wavelength division multiplexing (WDM), therefore in the present scenario optical orthogonal frequency division multiplexing can be used. Moreover in optical communication narrow Gaussian pulses are transmitted, which spread with distance and leads to the broadening of the pulse and pulse peak power goes down and thus limits the system. In this paper a Soliton based optical communication system is proposed and its comparison with Gaussian pulse is presented and it has been found that soliton pulse has lesser bit error rate in comparison to Gaussian pulses.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Rahul Deo Shukla ◽  
Ajay Pratap ◽  
Raghuraj Singh Suryavanshi

AbstractIn data center networks use of optical communication has revolutionized the data transfer mechanism. Optical communication heavily relies on enormous bandwidth of optical fiber. Wavelength Division Multiplexing (WDM) technique can be used for utilization of huge bandwidth. To employ WDM which uses distinct set of wavelengths to carry data wavelength converters are required. However as the tunable range of wavelength converter increases both cost and technological design complexity rises exponentially. Therefore, both Limited Range Wavelength Converter (LRWC) and Full Range Wavelength Converter (FRWC) are considered. However, under higher loading conditions buffering is also required as using wavelength converter (WC) blocking can be reduced significantly. This paper presents comprehensive analysis of blocking performance under various types of wavelengths converters and buffering of contending packets.


Author(s):  
BHADRA ANAMIKA ◽  
SAHU VIKAS ◽  
SHRIVASTAVA SHARAD MOHAN ◽  
ANSHU ◽  
SANGHVI ANJALI S. ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Georg Rademacher ◽  
Benjamin J. Puttnam ◽  
Ruben S. Luís ◽  
Tobias A. Eriksson ◽  
Nicolas K. Fontaine ◽  
...  

AbstractData rates in optical fiber networks have increased exponentially over the past decades and core-networks are expected to operate in the peta-bit-per-second regime by 2030. As current single-mode fiber-based transmission systems are reaching their capacity limits, space-division multiplexing has been investigated as a means to increase the per-fiber capacity. Of all space-division multiplexing fibers proposed to date, multi-mode fibers have the highest spatial channel density, as signals traveling in orthogonal fiber modes share the same fiber-core. By combining a high mode-count multi-mode fiber with wideband wavelength-division multiplexing, we report a peta-bit-per-second class transmission demonstration in multi-mode fibers. This was enabled by combining three key technologies: a wideband optical comb-based transmitter to generate highly spectral efficient 64-quadrature-amplitude modulated signals between 1528 nm and 1610 nm wavelength, a broadband mode-multiplexer, based on multi-plane light conversion, and a 15-mode multi-mode fiber with optimized transmission characteristics for wideband operation.


Sign in / Sign up

Export Citation Format

Share Document