Solitons based optical packet switch analysis

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Utkarsh Shukla ◽  
Niraj Singhal ◽  
Rajiv Srivastava

Abstract Due to the evolution of data centric applications demand for high speed data transfer and more bandwidth is increasing continuously. The unavailability of components like tunable wavelength converters (TWCs) restrict the transfer of parallel information using wavelength division multiplexing (WDM), therefore in the present scenario optical orthogonal frequency division multiplexing can be used. Moreover in optical communication narrow Gaussian pulses are transmitted, which spread with distance and leads to the broadening of the pulse and pulse peak power goes down and thus limits the system. In this paper a Soliton based optical communication system is proposed and its comparison with Gaussian pulse is presented and it has been found that soliton pulse has lesser bit error rate in comparison to Gaussian pulses.

Author(s):  
Vaibhav Shukla ◽  
Aruna Jain

Optical packet switching is connectionless networking solution through which we can get high speed data transfer and optimum bandwidth utilization using wavelength division multiplexing technique. For realizing optical packet switching the numbers of optical packet switch architectures are available in market. In this chapter the authors discuss the overall development of optical packet switching; some recently published optical packet switch architectures are discussed in the chapter and a comparison is performed between the switches through loss, cost and buffer analysis.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Rahul Deo Shukla ◽  
Ajay Pratap ◽  
Raghuraj Singh Suryavanshi

AbstractIn data center networks use of optical communication has revolutionized the data transfer mechanism. Optical communication heavily relies on enormous bandwidth of optical fiber. Wavelength Division Multiplexing (WDM) technique can be used for utilization of huge bandwidth. To employ WDM which uses distinct set of wavelengths to carry data wavelength converters are required. However as the tunable range of wavelength converter increases both cost and technological design complexity rises exponentially. Therefore, both Limited Range Wavelength Converter (LRWC) and Full Range Wavelength Converter (FRWC) are considered. However, under higher loading conditions buffering is also required as using wavelength converter (WC) blocking can be reduced significantly. This paper presents comprehensive analysis of blocking performance under various types of wavelengths converters and buffering of contending packets.


Author(s):  
S. Semmalar ◽  
S. Malarkkan

Proposed the EDFA and EYCDFA power booster (Erbium Doped Fiber Amplifier- Erbium ytterbium co doped fiber amplifier) with quad pumping for high speed and multi wavelength services in an optical communication. The proposed EDFA and EYCDFA power booster with WDM(Wavelength division multiplexing) simulated by dual forward and Backward pumping, Dual-backward pumping, Tri-single forward and dual backward pumping and Quadsingle forward and tri-backward pumping with respect to Pump power and fiber Length. The parameters Input Optical power, Output Optical power, Forward Signal power, Backward Signal power measured and determined the speed of transmission in all types of pumping methods. From that the proposed EDFA- ans EYCDFA power booster with WDM quad pumping is the best suitable for secured high speed optical telecommunication systems. The results shown in Quad pumping Output optical power is maximum 25.2dB and optimum spectral forward Signal power is 30.5dBm and very less spectral optical backward signal power of -25.4dBm with Length 5m


Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4579-4588
Author(s):  
Chenghao Feng ◽  
Zhoufeng Ying ◽  
Zheng Zhao ◽  
Jiaqi Gu ◽  
David Z. Pan ◽  
...  

AbstractIntegrated photonics offers attractive solutions for realizing combinational logic for high-performance computing. The integrated photonic chips can be further optimized using multiplexing techniques such as wavelength-division multiplexing (WDM). In this paper, we propose a WDM-based electronic–photonic switching network (EPSN) to realize the functions of the binary decoder and the multiplexer, which are fundamental elements in microprocessors for data transportation and processing. We experimentally demonstrate its practicality by implementing a 3–8 (three inputs, eight outputs) switching network operating at 20 Gb/s. Detailed performance analysis and performance enhancement techniques are also given in this paper.


2016 ◽  
Vol 37 (4) ◽  
Author(s):  
Sushank Chaudhary ◽  
Abhishek Sharma ◽  
Neha Chaudhary

AbstractInter-satellite communication is a revolutionary technique used to establish communication between satellites in space. One of the major challenges in inter-satellite link is transmitting pointing errors, which causes turbulences in the link. This work is focussed on successful transmission of 120 Gbps high-speed data over 1,000 km by adopting hybrid wavelength division multiplexing scheme and polarization interleaving scheme under the influence of transmitting pointing error.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sicong Wang ◽  
Chen Wei ◽  
Yuanhua Feng ◽  
Hongkun Cao ◽  
Wenzhe Li ◽  
...  

AbstractAlthough photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Saad M. Hardan ◽  
Ayad A. Abdulkafi ◽  
Saadi Hamad Thalij ◽  
Sherine S. Jumaah

Abstract The continued increase in several mobile applications forces to replace existing limited spectrum indoor radio frequency wireless connections with high-speed ones. Visible light communications (VLC) technology has gained prominence in the development of high data rate transmission for fifth-generation networks. In optical wireless communications, light-emitting diode (LED) transmitters are used in applications that desire mobility as LED divergence enables larger coverage. Since each VLC access point covers a small area, handovers of mobile users are inevitable. Wavelength division multiplexing (WDM) can be used in VLC systems to tackle the above issue and to meet the increasing demand for indoor connectivity with high bit rates. In this paper, a new system architecture for WDM with coded modulated optical in orthogonal frequency division multiplexing (OFDM) VLC system in conjunction with red, green, blue, and yellow (RGBY) LEDs is proposed to reduce the impact of random receiver orientation of indoor mobile users over VLC downlink channels and improves the system’s bit-error-rate (BER) performance. Simulation results show that the proposed method is not affected by the user’s mobility and hence it performs better than other approaches, in terms of BER for all scenarios and at all positions. This study reveals that using WDM-OFDM-VLC with RGBY LEDs to construct a VLC system is very promising.


2005 ◽  
Vol 50 (12) ◽  
pp. 2065-2069 ◽  
Author(s):  
R. Marquez ◽  
E. Altman ◽  
S. Sole-Alvarez

2007 ◽  
Vol 1054 ◽  
Author(s):  
Ruth Houbertz ◽  
Herbert Wolter ◽  
Volker Schmidt ◽  
Ladislav Kuna ◽  
Valentin Satzinger ◽  
...  

ABSTRACTThe integration of optical interconnects in printed circuit boards (PCB) is a rapidly growing field worldwide due to a continuously increasing need for high-speed data transfer. There are any concepts discussed, among which are the integration of optical fibers or the generation of waveguides by UV lithography, embossing, or direct laser writing. The devices presented so far require many different materials and process steps, but particularly also highly-sophisticated assembly steps in order to couple the optoelectronic elements to the generated waveguides. In order to overcome these restrictions, an innovative approach is presented which allows the embedding of optoelectronic components and the generation of optical waveguides in only one optical material. This material is an inorganic-organic hybrid polymer, in which the waveguides are processed by two-photon absorption (TPA) processes, initiated by ultra-short laser pulses. In particular, due to this integration and the possibility ofin situpositioning the optical waveguides with respect to the optoelectronic components by the TPA process, no complex packaging or assembly is necessary. Thus, the number of necessary processing steps is significantly reduced, which also contributes to the saving of resources such as energy or solvents. The material properties and the underlying processes will be discussed with respect to optical data transfer in PCBs.


Sign in / Sign up

Export Citation Format

Share Document