Influence of Tool Geometrical Parameters in High Speed Cutting of Aluminum Alloy

Author(s):  
Hong-bing Wu ◽  
Chengguang Xu ◽  
Xiancheng Wang ◽  
Zhao Zhang
2011 ◽  
Vol 314-316 ◽  
pp. 1788-1791 ◽  
Author(s):  
Feng Yun Yu ◽  
Ming Jun Feng ◽  
Ming Jun Dai ◽  
Hong Jiang Sun

High-speed cutting technology is widely used in aviation, mold, automotive industries and other fields for its high machining efficiency, smaller cutting force, less cutting heat and high machining precision. However, the production site in China, high-speed machine tools do not really play its role in some enterprises, without real sense of the high-speed machining. Aluminum alloy 2A70 as the research object, using single-factor test, study the effect law of high-speed milling parameters on milling force here. The results show that: the cutting force is varying for high-speed milling, showing a periodic variation, with the transient characteristic, the milling force is large amplitude fluctuations in X and Y direction, the amount of change is respectively 55.544N and 56.306N. Milling force influenced by the spindle speed, with the increase of spindle speed, X contribute to the greatest change in the direction of milling, Y direction second, Z direction is almost unchanged. Under the experimental conditions, the stability high-speed cutting area of 2A70 is the spindle speed in the area of 21000rpm~27000rpm. The results of high-speed milling of aluminum alloy have certain significance.


2010 ◽  
Vol 142 ◽  
pp. 11-15 ◽  
Author(s):  
Y.B. Liu ◽  
C. Zhao ◽  
X. Ji ◽  
Ping Zhou

High-speed cutting process of cutting force influence variables and variation and ordinary speed cutting are obviously different, in order to study the high-speed cutting process of different parameters on the effect of cutting force, based on five axis high-speed NC machining center, using multi-factor orthogonal test method for high speed milling of aluminum alloy impeller conducted experiments. It was analyzed that cutting force influence factors of 5-axises blade machining process. A private clamp was designed and produced, to measure the cutting force of machining process. It was observe that distribution of 3-dimension cutting forces in cutting path. It was found that the distribution rule of cutting force. With the experiment study on cutting force when high speed cutting aluminum cuprum, the influence disciplinarian of each cutting parameter on cutting force was obtained.


2020 ◽  
Vol 990 ◽  
pp. 13-17 ◽  
Author(s):  
Qi Hang Shi ◽  
Zong Cheng Hao ◽  
Shuai Wang ◽  
Xiu Li Fu ◽  
Hui Wang

Aluminum alloy 7050-T7451 is widely used in aeronautical large structural parts, and high speed cutting is often used in machining. The serrated chip is a critical state for chip formation in high speed cutting, and its formation and control mechanism are of great significance for actual machining. To study the chip formation of high speed cutting aluminum alloy 7050-T7451, the chips at different cutting speeds are obtained by high speed cutting experiments. Combined with microscopic observation, the chip shape evolution, chip localization fracture process and mechanism of different cutting speeds are analyzed. The morphological evolution of chips and the mechanism of chip breaking during high speed cutting of aluminum alloy are revealed. According to the machined surface of the chip root and the angle of the chip, the formation mechanism of the curl radius formed by the chip is analyzed. The critical cutting speed of plastic-brittle transformation of aluminum alloy 7050-T7451 in high speed cutting is obtained by studying the critical condition for strip-to-serration transition of chip morphology.


2011 ◽  
Vol 305 ◽  
pp. 225-229
Author(s):  
Ai Qin Lin ◽  
Min Li Zheng ◽  
Chun Guang Fan ◽  
Lin Yang

To surface milling cutters for research object, established considering the single spindle partial pendulum milling cutter tooth surfaces of high speed cutting 3d surface morphology simulation model by using graphic matrix transformation principle and vector algorithms. Comparing the simulation and forecast of surface morphology and surface roughness with the actual machining surface morphology and surface roughness by using the workpiece simulation algorithm meshing, we verify the correctness of the simulation model. The simulation analyses the influence regularity of surface morphology and surface roughness by changing cutting parameters and geometrical parameters. This can help us choosing the reasonable cutting parameters and geometrical parameters and have significance on the actual machining. The surface milling cutters are high efficiency and good quality of cutting big plane or curved surface. With the development of high speed cutting technology, in high speed milling process, product crumbs tumor and scales thorn hardly exists, so cutter geometrical parameters, cutting data and so on will be the main influence reasons of surface roughness. In order to satisfied the quality requirements, at present, we choice tools and determine the milling parameters depending on experience but it is limited. The surface roughness of the processing components is reflected intuitively by processed surface of microscopic geometric shape. So surface of microscopic geometric shape produced by theory emulation is significant to forecast the surface roughness and selecting reasonable cutting parameters. Currently, there are some simulation method researches about surface of microscopic geometric shape. Zhao Xiao ming et al [1, 2] has researched the simulation modeling of microscopic geometric shape of ball end mills during processing; Xu An ping et al [3, 4] has researched the simulation modeling methods of peripherally milling processing; Zhang Guang Peng et al [5] has researched the inversion multiple tooth surfaces of the milling cutter surface morphology simulation and develop simulation software. But all above researches are ideal simulation of surface shape. There are few researches about simulation of surface shape on condition of spindle partial pendulum. Based on object of surface milling cutters, this article researches simulation modeling methods of surface topography on condition of high speed milling and give an account of the corresponding simulation algorithm. From the article, we also get the influence law of microscopic geometric shape depending on different milling dosage, cutter geometrical parameters and eccentric quantity and get the significance conclusion to actual production.


Sign in / Sign up

Export Citation Format

Share Document