Surface Morphology Simulation of High Speed Milled of Face Milling Cutters

2011 ◽  
Vol 305 ◽  
pp. 225-229
Author(s):  
Ai Qin Lin ◽  
Min Li Zheng ◽  
Chun Guang Fan ◽  
Lin Yang

To surface milling cutters for research object, established considering the single spindle partial pendulum milling cutter tooth surfaces of high speed cutting 3d surface morphology simulation model by using graphic matrix transformation principle and vector algorithms. Comparing the simulation and forecast of surface morphology and surface roughness with the actual machining surface morphology and surface roughness by using the workpiece simulation algorithm meshing, we verify the correctness of the simulation model. The simulation analyses the influence regularity of surface morphology and surface roughness by changing cutting parameters and geometrical parameters. This can help us choosing the reasonable cutting parameters and geometrical parameters and have significance on the actual machining. The surface milling cutters are high efficiency and good quality of cutting big plane or curved surface. With the development of high speed cutting technology, in high speed milling process, product crumbs tumor and scales thorn hardly exists, so cutter geometrical parameters, cutting data and so on will be the main influence reasons of surface roughness. In order to satisfied the quality requirements, at present, we choice tools and determine the milling parameters depending on experience but it is limited. The surface roughness of the processing components is reflected intuitively by processed surface of microscopic geometric shape. So surface of microscopic geometric shape produced by theory emulation is significant to forecast the surface roughness and selecting reasonable cutting parameters. Currently, there are some simulation method researches about surface of microscopic geometric shape. Zhao Xiao ming et al [1, 2] has researched the simulation modeling of microscopic geometric shape of ball end mills during processing; Xu An ping et al [3, 4] has researched the simulation modeling methods of peripherally milling processing; Zhang Guang Peng et al [5] has researched the inversion multiple tooth surfaces of the milling cutter surface morphology simulation and develop simulation software. But all above researches are ideal simulation of surface shape. There are few researches about simulation of surface shape on condition of spindle partial pendulum. Based on object of surface milling cutters, this article researches simulation modeling methods of surface topography on condition of high speed milling and give an account of the corresponding simulation algorithm. From the article, we also get the influence law of microscopic geometric shape depending on different milling dosage, cutter geometrical parameters and eccentric quantity and get the significance conclusion to actual production.

2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Mohd Shahfizal Ruslan ◽  
Kamal Othman ◽  
Jaharah A.Ghani ◽  
Mohd Shahir Kassim ◽  
Che Hassan Che Haron

Magnesium alloy is a material with a high strength to weight ratio and is suitable for various applications such as in automotive, aerospace, electronics, industrial, biomedical and sports. Most end products require a mirror-like finish, therefore, this paper will present how a mirror-like finishing can be achieved using a high speed face milling that is equivalent to the manual polishing process. The high speed cutting regime for magnesium alloy was studied at the range of 900-1400 m/min, and the feed rate for finishing at 0.03-0.09 mm/tooth. The surface roughness found for this range of cutting parameters were between 0.061-0.133 µm, which is less than the 0.5µm that can be obtained by manual polishing. Furthermore, from the S/N ratio plots, the optimum cutting condition for the surface roughness can be achieved at a cutting speed of 1100 m/min, feed rate 0.03 mm/tooth, axial depth of cut of 0.20 mm and radial depth of cut of 10 mm. From the experimental result the lowest surface roughness of 0.061µm was obtained at 900 m/min with the same conditions for other cutting parameters. This study revealed that by milling AZ91D at a high speed cutting, it is possible to eliminate the polishing process to achieve a mirror-like finishing.


2020 ◽  
Vol 846 ◽  
pp. 133-138
Author(s):  
Gandjar Kiswanto ◽  
Adrian Mandala ◽  
Maulana Azmi ◽  
Tae Jo Ko

Micro-milling offers high flexibility by producing complex 3D micro-scale products. Weight reduction are one of the optimizations of the product that can make it stronger and more efficient nowadays. Titanium are the most commonly used for micro-scale products especially in biomedical industries because of the biocompatibility properties. Titanium alloys offers high strength with low density and high corrosion resistance that is suitable for weight reduction. This study aims to investigate the influence of high speed cutting parameters to the surface roughness in micromilling of titanium alloy Ti-6Al-4V as high speed cutting offers more productivity since producing more cutting length in the same time. experiments are carried out by micromilling process with variations in high speed cutting parameters of spindle speed and feed rate with a constant depth of cut using a carbide cutting tool of with a diameter of 1 mm. The machining results in the form of a 4 mm slot with a depth as the same as depth of cut, which then measures its surface roughness. It was found that higher feed rate that is followed by higher spindle speed will produce better surface roughness.


2006 ◽  
Vol 505-507 ◽  
pp. 625-630 ◽  
Author(s):  
Jinn Jong Sheu ◽  
T.C. Fu

An intelligent E-Manufacturing system was developed in this paper. The high speed machining center was rebuilt using 3D CAD system. The moving table (X axis), span column (Y axis), spindle (Z axis) and the tool changing system were modeled precisely. The high speed cutting (HSC) experiments of AL 6061 were carried to obtain the cutting forces and surface roughness for different cutting conditions. The backward propagation supervised artificial neural network (ANN) system was developed to predict the results of the high speed cutting. The intelligent virtual reality (VR) system of high speed cutting was developed integration the ANN and the VR environment. The users were able to learn the manual and the CNC operations of the HSC machine. The actions of users were recorded and evaluated to judge the learning results. The cutting results of forces and surface roughness of user’s NC program was predicted by the ANN system to assist the NC programmer to adopt the suitable cutting parameters. The developed VR system was deployed to the internet webpage to supply a good E-Learning and E-Manufacturing environment.


2011 ◽  
Vol 120 ◽  
pp. 296-303
Author(s):  
Xing Quan Shen ◽  
Yao Ming Li ◽  
Hai Jiao Zhang

Single-edge rigid reaming process has high-speed cutting rigid hinge processing, auto-oriented, low surface roughness of a series of advantages. In this paper, by using of the elastic and plastic theory, we studied the effect of the force acting on the guide block extrusion on the hole wall, proposed the two different cutting states of single-edge rigid reaming processing, and analyzed the conditions of the reaming processing in the extrusion state. By the analysis of experiments, we obtained that in order to achieve the good hole processing surface quality we must make the reaming processing in the extrusion processing state, and we determined the impact of the cutting parameters on the cutting force and surface roughness.


Author(s):  
Herbert Schulz ◽  
Stefan Hock

The efficiency of steam- and gasturbines is mainly influenced by the geometry and the surface roughness of the turbine blades. Therefore the profile contour of the blades must be machined as accurate as possible. High speed cutting (hsc) offers a lot of advantages for surface finishing of turbine blades. The paper describes the influence of different cutting parameters as well as the importance of tool geometry for the surface quality achievable by high speed milling. Specific requirements for machine tools for high speed milling will be discussed.


2011 ◽  
Vol 287-290 ◽  
pp. 104-107
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools and cutting parameters are determinted by simulating the influences of cutting speed, cutting depth and feeding rate on the cutting parameters using FEA.


2014 ◽  
Vol 989-994 ◽  
pp. 3331-3334
Author(s):  
Tao Zhang ◽  
Guo He Li ◽  
L. Han

High speed milling is a newly developed advanced manufacturing technology. Surface integrity is an important object of machined parts. Surface roughness is mostly used to evaluate to the surface integrity. A theoretical surface roughness model for high face milling was established. The influence of cutting parameters on the surface roughness is analyzed. The surface roughness decreases when the cutter radius increases, total number of tooth and rotation angular speed, while it increases with the feeding velocity. The high speed face milling can get a smooth surface and it can replace the grinding with higher efficiency.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shao-Hsien Chen ◽  
Chung-An Yu

In recent years, most of nickel-based materials have been used in aircraft engines. Nickel-based materials applied in the aerospace industry are used in a wide range of applications because of their strength and rigidity at high temperature. However, the high temperatures and high strength caused by the nickel-based materials during cutting also reduce the tool lifetime. This research aims to investigate the tool wear and the surface roughness of Waspaloy during cutting with various cutting speeds, feed per tooth, cutting depth, and other cutting parameters. Then, it derives the formula for the tool lifetime based on the experimental results and explores the impacts of these cutting parameters on the cutting of Waspaloy. Since the impacts of cutting speed on the cutting of Waspaloy are most significant in accordance with the experimental results, the high-speed cutting is not recommended. In addition, the actual surface roughness of Waspaloy is worse than the theoretical surface roughness in case of more tool wear. Finally, a set of mathematical models can be established based on these results, in order to predict the surface roughness of Waspaloy cut with a worn tool. The errors between the predictive values and the actual values are 5.122%∼8.646%. If the surface roughness is within the tolerance, the model can be used to predict the residual tool lifetime before the tool is damaged completely. The errors between the predictive values and the actual values are 8.014%∼20.479%.


Sign in / Sign up

Export Citation Format

Share Document