Design of a sliding mode controller for automotive engine speed regulation

Author(s):  
Ximing Cheng ◽  
Shasha Jiang ◽  
Shuzhi Wang
2020 ◽  
Vol 102 (1) ◽  
pp. 185-196
Author(s):  
Linan Wang ◽  
Haibo Du ◽  
Weijian Zhang ◽  
Di Wu ◽  
Wenwu Zhu

2018 ◽  
Vol 7 (1.8) ◽  
pp. 214
Author(s):  
Polamraju. V.S.Sobhan ◽  
G V. Nagesh Kumar ◽  
P V. Ramana Rao

Motors working in extreme conditions such as ultra high and low temperatures, high contamination, high purity etc. require high maintenance of mechanical bearings and the regular lubrication. Hence there is a need of a motor without mechanical bearings and lubrication in addition to simple in control and less maintenance. There by, bearingless motors (BLMs) gain more attention. The bearingless switched reluctance motor’s (BLSRM)  is simple in construction and economical in addition to high speed capacity and high torque to inertia ratio. The magnetic nonlinearity arising due to double salient structure makes rotor eccentric displacement control and speed regulation complicate and needs robust control methodology such as sliding mode control (SMC) which has integrity, high certainty and rapid dynamic response when compared to typical controllers. Sliding mode can be realized with distinct classical reaching laws. This paper presents design and implementation of a SMC for a 12/14 BLSRM and the dynamic performance is endorsed by simulation using Matlab software.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xuemin Li ◽  
Yufei Liu ◽  
Haoyu Shu ◽  
Runzhi Wang ◽  
Yunlong Yang ◽  
...  

This paper proposes a disturbance observer-based discrete sliding-mode control scheme with the variable sampling rate control for the marine diesel engine speed control in the presence of system uncertainties and disturbances. Initially, a sliding-mode controller based on the fast power reaching law is employed, which has a good dynamic quality of the arrival stage and can suppress chattering. To satisfy the practical requirements in the digital controller and the crank angle-based fuel injection in engine speed control, the proposed method is discretized under the variable sampling rate condition. A disturbance observer based on the second-order sliding-mode control is designed to compensate the system uncertainties and disturbances, by doing such the requirement of the parameters of the sliding-mode controller to be reduced significantly. In addition, a cylinder-by-cylinder mean value engine model (MVEM) is built by restructuring the combustion torque model, based on which numerical simulations are carried out by comparing the proposed method with PID and the extended state observer (ESO)-based sliding mode controllers. The common operation situations of the marine diesel engines are taken into account, including starting process, acceleration and deceleration, load variation, and varied propulsion system parameters. The results demonstrate that the proposed disturbance observer-based sliding-mode controller has prominent control performance and strong robustness.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 63577-63584
Author(s):  
Li Feng ◽  
Meng Deng ◽  
Shuiqing Xu ◽  
Darong Huang

2000 ◽  
Author(s):  
J. R. Wagner ◽  
D. M. Dawson ◽  
Z. Liu

Abstract The wide-range of operating conditions, inherent induction process nonlinearities, and gradual component degradations due to aging, have prompted research into model-based engine control algorithms. Consequentially, a variety of nonlinear and intelligent algorithms have been proposed and experimentally studied. Recent attention has focused on the simultaneous regulation of the air-to-fuel ratio and engine speed using a sliding mode control strategy. In this paper, a nonlinear model-based backstepping control strategy will be proposed for simultaneous air-to-fuel ratio control and speed tracking in passenger/light-duty automobile engines. For comparison purposes, a multi-surface sliding mode controller and an integrated speed-density air-to-fuel controller with attached engine speed regulation will be implemented. Representative numerical results will be presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document