Nonlinear Air-to-Fuel Ratio and Engine Speed Control for Spark Ignition Engines

2000 ◽  
Author(s):  
J. R. Wagner ◽  
D. M. Dawson ◽  
Z. Liu

Abstract The wide-range of operating conditions, inherent induction process nonlinearities, and gradual component degradations due to aging, have prompted research into model-based engine control algorithms. Consequentially, a variety of nonlinear and intelligent algorithms have been proposed and experimentally studied. Recent attention has focused on the simultaneous regulation of the air-to-fuel ratio and engine speed using a sliding mode control strategy. In this paper, a nonlinear model-based backstepping control strategy will be proposed for simultaneous air-to-fuel ratio control and speed tracking in passenger/light-duty automobile engines. For comparison purposes, a multi-surface sliding mode controller and an integrated speed-density air-to-fuel controller with attached engine speed regulation will be implemented. Representative numerical results will be presented and discussed.

Author(s):  
P F Puleston ◽  
G Monsees ◽  
S K Spurgeon

This paper deals with the combined air-fuel ratio (AFR) and speed control of automotive engines. The robust controller is developed using dynamic sliding mode (SM) control design methods. The proposed controller set-up is tested under realistic operating conditions by means of computer simulation using a comprehensive non-linear model of a four-stroke engine, specifically provided by the automotive industry for these purposes. This accurate industrial model comprises extensive dynamics description and numerous look-up tables representing parameter characteristics obtained from experimental data. The SM controller set-up proves to be robust to model uncertainties and unknown disturbances, regulating effectively the engine speed for a wide range of set-points while maintaining the AFR at the stoichiometric value.


Author(s):  
Alessandro di Gaeta ◽  
Umberto Montanaro ◽  
Veniero Giglio

Nowadays, the precise control of the air fuel ratio (AFR) in spark ignition (SI) engines plays a crucial role in meeting the more and more restrictive standard emissions for the passenger cars and the fuel economy required by the automotive market as well. To attain this demanding goal, the development of an advanced AFR control strategy embedding highly predictive models becomes mandatory for the next generation of electronic control unit (ECU). Conversely, the adoption of more complex control strategies affects the development time of the ECU increasing the time-to-market of new engine models. In this paper to solve the AFR control problem for gasoline direct injection (GDI) and to speed up the design of the entire control system, a gain scheduling PI model-based control strategy is proposed. To this aim, AFR dynamics are modeled via a first order time delay system whose parameters vary strongly with the fresh air mass entering the cylinders. Nonlinear relations have been found to describe the behavior of model parameters in function of air mass. Closed loop performances, when this novel controller is nested in the control loop, are compared to those provided by the classical PI Ziegler–Nichols control action with respect to different cost functions. Model validation as well as the effectiveness of the control design are carried out by means of ECU-1D engine co-simulation environment for a wide range of engine working conditions. The combination in one integrated designing environment of control systems and virtual engine, simulated through high predictive commercial one dimensional code, becomes a high predictive tool for automotive control engineers and enables fast prototyping.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Youhong Xiao ◽  
Hui Zhao ◽  
Xinna Tian ◽  
Wenyang Tan

Selective catalytic reduction (SCR) system has been proven to be an effective technology for the removal of NOx emitted from marine diesel engines. In order to comply with stringent International Maritime Organization (IMO) Tier III NOx emission regulations, a number of engine manufacturers have developed their own SCR systems. This paper focuses on modeling of an SCR reactor and developing model-based urea dosing control strategy. A mathematical model of SCR reactors has been established. Model-based control strategy relies on the three-state and one-state reactor models established to accomplish urea dosing algorithm and is promising in limiting excessive NH3 slip. The SCR reactor model is further used in a simulation for the purpose of developing model-based urea dosing control strategies. The simulation results show that the NO sliding mode control requires a massive prestudy of the NOx reduction capability of the catalyst in order to set an appropriate control objective for each operating condition. However, this calibration work can be omitted in the optimal control and NH3 sliding mode control, which mitigates the workload of the controller design. The optimal control strategy presents a satisfied control performance in limiting NH3 slip during transient state engine operating conditions.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2287
Author(s):  
Kaina Qin ◽  
Shanshan Wang ◽  
Zhongjian Kang

With the rapid increase in the proportion of the installed wind power capacity in the total grid capacity, the state has put forward higher and higher requirements for wind power integration into the grid, among which the most difficult requirement is the zero-voltage ride through (ZVRT) capability of the wind turbine. When the voltage drops deeply, a series of transient processes, such as serious overvoltage, overcurrent, or speed rise, will occur in the motor, which will seriously endanger the safe operation of the wind turbine itself and its control system, and cause large-scale off-grid accident of wind generator. Therefore, it is of great significance to improve the uninterrupted operation ability of the wind turbine. Doubly fed induction generator (DFIG) can achieve the best wind energy tracking control in a wide range of wind speed and has the advantage of flexible power regulation. It is widely used at present, but it is sensitive to the grid voltage. In the current study, the DFIG is taken as the research object. The transient process of the DFIG during a fault is analyzed in detail. The mechanism of the rotor overcurrent and DC bus overvoltage of the DFIG during fault is studied. Additionally, the simulation model is built in DIgSILENT. The active crowbar hardware protection circuit is put into the rotor side of the wind turbine, and the extended state observer and terminal sliding mode control are added to the grid side converter control. Through the cooperative control technology, the rotor overcurrent and DC bus overvoltage can be suppressed to realize the zero-voltage ride-through of the doubly fed wind turbine, and ensure the safe and stable operation of the wind farm. Finally, the simulation results are presented to verify the theoretical analysis and the proposed control strategy.


Author(s):  
Shunki Nishii ◽  
Yudai Yamasaki

Abstract To achieve high thermal efficiency and low emission in automobile engines, advanced combustion technologies using compression autoignition of premixtures have been studied, and model-based control has attracted attention for their practical applications. Although simplified physical models have been developed for model-based control, appropriate values for their model parameters vary depending on the operating conditions, the engine driving environment, and the engine aging. Herein, we studied an onboard adaptation method of model parameters in a heat release rate (HRR) model. This method adapts the model parameters using neural networks (NNs) considering the operating conditions and can respond to the driving environment and the engine aging by training the NNs onboard. Detailed studies were conducted regarding the training methods. Furthermore, the effectiveness of this adaptation method was confirmed by evaluating the prediction accuracy of the HRR model and model-based control experiments.


Energy ◽  
2019 ◽  
Vol 169 ◽  
pp. 1202-1213 ◽  
Author(s):  
Banglin Deng ◽  
Qing Li ◽  
Yangyang Chen ◽  
Meng Li ◽  
Aodong Liu ◽  
...  

Author(s):  
Caio H Rufino ◽  
Waldyr LR Gallo ◽  
Janito V Ferreira

By evaluating combustion duration and flame development, it is possible to evaluate the effects of utilizing a new type of fuel. This allows for optimization of the operational parameters such as the ignition timing, air–fuel ratio, and throttle opening with respect to efficiency, knock, emissions, and performance. In this work, the combustion of a Brazilian hydrous ethanol fuel was evaluated in a commercial flexfuel engine. Investigations were conducted by performing a heat release analysis of the experimental data and providing combustion characteristics. The experimental design comprised of variations in engine speed, load, ignition timing, and air–fuel ratio under lean condition. The results indicated the relationship between the engine parameters and combustion characteristics under a wide range of operational conditions, and identified the relationship between the physical characteristics of the fuels and their combustion in the commercial engine. For high engine speed, lean combustion presented a similar duration to the stoichiometric combustion duration. When comparing the combustion characteristics obtained for the hydrous ethanol with gasoline combustion, the main differences noted were reduced sensitivity to detonation and a shorter duration of combustion, although the temperature at the start of combustion was lower for ethanol. In addition to shorter combustion duration, ethanol presented a lower value for the Wiebe exponent. The results obtained from the combustion duration values and Wiebe function parameters enable the composition of a set of data required for a simplified combustion simulation.


2019 ◽  
Vol 42 (3) ◽  
pp. 586-597 ◽  
Author(s):  
Li Shengquan ◽  
Li Juan ◽  
Tang Yongwei ◽  
Shi Yanqiu ◽  
Cao Wei

This paper deals with the critical issue in a direct-driven permanent magnet synchronous generator (PMSG)-based wind energy conversion system (WECS): the rejection of internal and external disturbances, including the uncertainties of external environment, rapid wind speed changes in the original parameters of the generator caused by mutative operating conditions. To track the maximum power, a maximum power point tracking strategy based on model predictive controller (MPC) is proposed with extended state observer (ESO) to attenuate the disturbances and uncertainties. In real application, system inertia and the system parameters vary in a wide range with variations of wind speeds and disturbances, which substantially degrade the maximum power tracking performance of wind turbine. The MPC design should incorporate the available model information into the ESO to improve the control efficiency. Based on this principle, a model-based MPC with ESO control structure is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of internal and external disturbances is compensated in a more effective way compared with the ESO-based MPC approach and traditional proportional integral differential (PID) control method.


Author(s):  
Hsiu-Ming Wu ◽  
Reza Tafreshi

Minimization of the carbon dioxide and harmful pollutants emissions and maximization of fuel economy for the lean-burn spark ignition (SI) engines significantly rely on precise air-fuel ratio (AFR) control. However, the main challenge of AFR control is the large time-varying delay which exists in lean-burn engines. Since the system is usually subject to external disturbances and uncertainties, a high level of robustness in the AFR control design has to be considered. Herein, a fuzzy sliding-mode control (FSMC) technique is proposed to track the desired AFR in the presence of periodic disturbances. The proposed method is model free and does not need any system characteristics. Based on the fuzzy system input-output data, two scaling factors are first employed to normalize the sliding surface and its derivative. According to the concept of the if-then rule, an appropriate rule table for the logic system is designed. Finally, the feasibility and effectiveness of the proposed control scheme are evaluated under various operating conditions.


Sign in / Sign up

Export Citation Format

Share Document