scholarly journals Rotor Suspension and Stabilization of Bearingless SRM using Sliding Mode Controller

2018 ◽  
Vol 7 (1.8) ◽  
pp. 214
Author(s):  
Polamraju. V.S.Sobhan ◽  
G V. Nagesh Kumar ◽  
P V. Ramana Rao

Motors working in extreme conditions such as ultra high and low temperatures, high contamination, high purity etc. require high maintenance of mechanical bearings and the regular lubrication. Hence there is a need of a motor without mechanical bearings and lubrication in addition to simple in control and less maintenance. There by, bearingless motors (BLMs) gain more attention. The bearingless switched reluctance motor’s (BLSRM)  is simple in construction and economical in addition to high speed capacity and high torque to inertia ratio. The magnetic nonlinearity arising due to double salient structure makes rotor eccentric displacement control and speed regulation complicate and needs robust control methodology such as sliding mode control (SMC) which has integrity, high certainty and rapid dynamic response when compared to typical controllers. Sliding mode can be realized with distinct classical reaching laws. This paper presents design and implementation of a SMC for a 12/14 BLSRM and the dynamic performance is endorsed by simulation using Matlab software.

Author(s):  
Gurubasavaraju Tharehalli mata ◽  
Vijay Mokenapalli ◽  
Hemanth Krishna

This study assesses the dynamic performance of the semi-active quarter car vehicle under random road conditions through a new approach. The monotube MR damper is modelled using non-parametric method based on the dynamic characteristics obtained from the experiments. This model is used as the variable damper in a semi-active suspension. In order to control the vibration caused under random road excitation, an optimal sliding mode controller (SMC) is utilised. Particle swarm optimisation (PSO) is coupled to identify the parameters of the SMC. Three optimal criteria are used for determining the best sliding mode controller parameters which are later used in estimating the ride comfort and road handling of a semi-active suspension system. A comparison between the SMC, Skyhook, Ground hook and PID controller suggests that the optimal parameters with SMC have better controllability than the PID controller. SMC has also provided better controllability than the PID controller at higher road roughness.


Author(s):  
Naser Esmaeili ◽  
Reza Kazemi ◽  
S Hamed Tabatabaei Oreh

Today, use of articulated long vehicles is surging. The advantages of using large articulated vehicles are that fewer drivers are used and fuel consumption decreases significantly. The major problem of these vehicles is inappropriate lateral performance at high speed. The articulated long vehicle discussed in this article consists of tractor and two semi-trailer units that widely used to carry goods. The main purpose of this article is to design an adaptive sliding mode controller that is resistant to changing the load of trailers and measuring the noise of the sensors. Control variables are considered as yaw rate and lateral velocity of tractor and also first and second articulation angles. These four variables are regulated by steering the axles of the articulated vehicle. In this article after developing and verifying the dynamic model, a new adaptive sliding mode controller is designed on the basis of a nonlinear model. This new adaptive sliding mode controller steers the axles of the tractor and trailers through estimation of mass and moment of inertia of the trailers to maintain the stability of the vehicle. An articulated vehicle has been exposed to a lane change maneuver based on the trailer load in three different modes (low, medium and high load) and on a dry and wet road. Simulation results demonstrate the efficiency of this controller to maintain the stability of this articulated vehicle in a low-speed steep steer and high-speed lane change maneuvers. Finally, the robustness of this controller has been shown in the presence of measurement noise of the sensors. In fact, the main innovation of this article is in the designing of an adaptive sliding mode controller, which by changing the load of the trailers, in high-speed and low-speed maneuvers and in dry and wet roads, has the best performance compared to conventional sliding mode and linear controllers.


CIRP Annals ◽  
2000 ◽  
Vol 49 (1) ◽  
pp. 265-270 ◽  
Author(s):  
Y. Altintas ◽  
K. Erkorkmaz ◽  
W.-H. Zhu

2020 ◽  
Vol 102 (1) ◽  
pp. 185-196
Author(s):  
Linan Wang ◽  
Haibo Du ◽  
Weijian Zhang ◽  
Di Wu ◽  
Wenwu Zhu

Author(s):  
Zhongda Tian ◽  
◽  
Xianwen Gao ◽  
Peiqin Guo ◽  

A teleoperation robot system is connected through a network. However, stochastic delay in such a network can affect its performance, or even make the system unstable. To solve this problem, this paper proposes a teleoperation robot system control method based on fuzzy sliding mode. In the proposed method, a delay generator generates variable delay conforming to a shift gamma distribution designed to simulate actual network delay. In addition, a proposed fuzzy sliding mode controller based on switching gain adjustment is used to rectify the chattering phenomenon in the sliding mode controller of the teleoperation robot system. In the controller, the master hand uses impedance control and realizes feedback from the slave hand. Controller simulation comparison results show that the proposed fuzzy sliding mode controller effectively eliminates the sliding mode control chattering phenomenon as the slave hand stabilizes the tracking velocity of the master hand. Consequently, the system exhibits improved dynamic performance.


Sign in / Sign up

Export Citation Format

Share Document