Comparing the performance of different control techniques for DC-DC boost converter with variable solar PV generation in DC microgrid

Author(s):  
Amjad Ali ◽  
Yunjie Gu ◽  
Chi Xu ◽  
Wuhua Li ◽  
Xiangning He
2018 ◽  
Vol 4 (8) ◽  
pp. 1-7
Author(s):  
Shruti Gupta ◽  
Dr. Malaya S Das ◽  
Dr.Anuprita Mishra

This paper presents modeling and simulation of an autonomous DC microgrid in Matlab Simulink environment. The proposed microgrid system consists of a wind turbine, solar PV array  ac grid and DC loads. The wind turbine &Ac grid  is interfaced to the microgrid with a rectifier and a buck converter which are controlled to maintain a constant DC bus voltage. While the PV array is connected via a boost converter which extracts maximum power from the circuit. the microgrid system also consists of a Energy Storage System (ESS) which is connected via a bidirectional buck-boost converter. The overall stability of the microgrid is maintained by the control action of the ESS. DC microgid system have been analyzed and simulation done using Matlab.


Author(s):  
Matheepot Phattanasak ◽  
Roghayeh Gavagsaz-Ghoachani ◽  
Jean-Philippe Martin ◽  
Serge Pierfederici ◽  
Babak Nahid-Mobarakeh ◽  
...  

Author(s):  
Shima Sadaf ◽  
Nasser Al-Emadi ◽  
Atif Iqbal ◽  
Mohammad Meraj ◽  
Mahajan Sagar Bhaskar

DC-DC power converters are necessary to step-up the voltage or current with high conversion ratio for many applications e.g. photovoltaic and fuel cell energy conversion, uninterruptible power supply, DC microgrid, automobile, high intensity discharged lamp ballast, hybrid vehicle, etc. in order to use low voltage sources. In this project, a modified SIBC (mSIBC) is proposed with reduced voltage stress across active switches. The proposed mSIBC configuration is transformerless and simply derived by replacing one diode of the classical switched inductor structure with an active switch. As a result, mSIBC required low voltage rating active switches, as the total output voltage is shared between two active switches. Moreover, the proposed mSIBC is low in cost, provides higher efficiency and required the same number of components compared to the classical SIBC. The experimental results are presented which validated the theoretical analysis and functionality, and the efficiency of the designed converter is 97.17%. The proposed mSIBC converter provides higher voltage conversion ratio compared to classical converters e.g. boost, buck-boost, cuk, and SEPIC. The newly designed configurations will aid the intermediate power stage between the renewable sources and utility grid or high voltage DC or AC load. Since, the total output voltage is distributed among the two active switches, low voltage rating switches can be employed to design the power circuit of the proposed converter. The classical boost converter or recently proposed switched inductor based boost converter can be replaced by the proposed mSIBC converter in real-time applications such as DC microgrid, DC-DC charger, battery backup system, UPS, EV, an electric utility grid. The proposed power circuitry is cost effective, compact in size, easily diagnostic, highly efficient and reliable.


2020 ◽  
Vol 7 (2) ◽  
pp. E7-E13
Author(s):  
T. K. Barui ◽  
S. Goswami ◽  
D. Mondal

Renewable energy sources (RESs) are becoming increasingly important day by day to tranquilize the world’s energy crisis and consume fossil fuels in the lower rung. A microgrid system that assimilates clean and green energy-based sources such as solar, wind, and biogas is acquiring much prominence over the conventional grid-based power systems in this day and age. For the up and running of the inexhaustible energy sources in the AC power network, numerous conversions of the power sources occur. In the process of conversion, some amount of power is lost, which minimizes conversion efficiency. However, with the increasing use of DC loads and Distributed Energy Resources (DERs), DC Microgrid could be more beneficial than the conventional AC power system by avoiding several types of drawbacks. This paper demonstrates an efficient system of digitally controlled boost converter for the parallel operation in DC microgrid. Here, the converter of 2.5kW 400V is designed and implemented to validate its functioning in a Microgrid. The whole system has been simulated in MATLAB with an input voltage range of 220–380 V. It has been found that the designed converter can maintain the desired output voltage in the DC Busbar at and around 400 V. Finally, some simulation results have been presented to analyze the converter’s operational characteristics and effectiveness in the practical domain.


Sign in / Sign up

Export Citation Format

Share Document