Efficient Fine-Tuning of Neural Networks for Artifact Removal in Deep Learning for Inverse Imaging Problems

Author(s):  
Alice Lucas ◽  
Santiago Lopez-Tapia ◽  
Rafael Molina ◽  
Aggelos K. Katsaggelos
2018 ◽  
Vol 63 (18) ◽  
pp. 185012 ◽  
Author(s):  
Faisal Mahmood ◽  
Richard Chen ◽  
Sandra Sudarsky ◽  
Daphne Yu ◽  
Nicholas J Durr

2020 ◽  
Vol 70 (2) ◽  
pp. 234-238
Author(s):  
K.S. Imanbaev ◽  

Currently, deep learning of neural networks is one of the most popular methods for speech recognition, natural language processing, and computer vision. The article reviews the history of deep learning of neural networks and the current state in General. We consider algorithms for training neural networks used for deep training of neural networks, followed by fine-tuning using the method of back propagation of errors. Neural networks with large numbers of hidden layers, frequently occurring and disappearing gradients are very difficult to train. In this paper, we consider methods that successfully implement training of neural networks with large numbers of layers (more than one hundred) and vanishing gradients. A review of well-known libraries used for successful deep learning of neural networks is conducted.


Author(s):  
Dong-Dong Chen ◽  
Wei Wang ◽  
Wei Gao ◽  
Zhi-Hua Zhou

Deep neural networks have witnessed great successes in various real applications, but it requires a large number of labeled data for training. In this paper, we propose tri-net, a deep neural network which is able to use massive unlabeled data to help learning with limited labeled data. We consider model initialization, diversity augmentation and pseudo-label editing simultaneously. In our work, we utilize output smearing to initialize modules, use fine-tuning on labeled data to augment diversity and eliminate unstable pseudo-labels to alleviate the influence of suspicious pseudo-labeled data. Experiments show that our method achieves the best performance in comparison with state-of-the-art semi-supervised deep learning methods. In particular, it achieves 8.30% error rate on CIFAR-10 by using only 4000 labeled examples.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Emre Kiyak ◽  
Gulay Unal

Purpose The paper aims to address the tracking algorithm based on deep learning and four deep learning tracking models developed. They compared with each other to prevent collision and to obtain target tracking in autonomous aircraft. Design/methodology/approach First, to follow the visual target, the detection methods were used and then the tracking methods were examined. Here, four models (deep convolutional neural networks (DCNN), deep convolutional neural networks with fine-tuning (DCNNFN), transfer learning with deep convolutional neural network (TLDCNN) and fine-tuning deep convolutional neural network with transfer learning (FNDCNNTL)) were developed. Findings The training time of DCNN took 9 min 33 s, while the accuracy percentage was calculated as 84%. In DCNNFN, the training time of the network was calculated as 4 min 26 s and the accuracy percentage was 91%. The training of TLDCNN) took 34 min and 49 s and the accuracy percentage was calculated as 95%. With FNDCNNTL, the training time of the network was calculated as 34 min 33 s and the accuracy percentage was nearly 100%. Originality/value Compared to the results in the literature ranging from 89.4% to 95.6%, using FNDCNNTL, better results were found in the paper.


2021 ◽  
Vol 12 ◽  
Author(s):  
Patrick Thiam ◽  
Heinke Hihn ◽  
Daniel A. Braun ◽  
Hans A. Kestler ◽  
Friedhelm Schwenker

Traditional pain assessment approaches ranging from self-reporting methods, to observational scales, rely on the ability of an individual to accurately assess and successfully report observed or experienced pain episodes. Automatic pain assessment tools are therefore more than desirable in cases where this specific ability is negatively affected by various psycho-physiological dispositions, as well as distinct physical traits such as in the case of professional athletes, who usually have a higher pain tolerance as regular individuals. Hence, several approaches have been proposed during the past decades for the implementation of an autonomous and effective pain assessment system. These approaches range from more conventional supervised and semi-supervised learning techniques applied on a set of carefully hand-designed feature representations, to deep neural networks applied on preprocessed signals. Some of the most prominent advantages of deep neural networks are the ability to automatically learn relevant features, as well as the inherent adaptability of trained deep neural networks to related inference tasks. Yet, some significant drawbacks such as requiring large amounts of data to train deep models and over-fitting remain. Both of these problems are especially relevant in pain intensity assessment, where labeled data is scarce and generalization is of utmost importance. In the following work we address these shortcomings by introducing several novel multi-modal deep learning approaches (characterized by specific supervised, as well as self-supervised learning techniques) for the assessment of pain intensity based on measurable bio-physiological data. While the proposed supervised deep learning approach is able to attain state-of-the-art inference performances, our self-supervised approach is able to significantly improve the data efficiency of the proposed architecture by automatically generating physiological data and simultaneously performing a fine-tuning of the architecture, which has been previously trained on a significantly smaller amount of data.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 564 ◽  
Author(s):  
Thanh Vo ◽  
Trang Nguyen ◽  
C. Le

Race recognition (RR), which has many applications such as in surveillance systems, image/video understanding, analysis, etc., is a difficult problem to solve completely. To contribute towards solving that problem, this article investigates using a deep learning model. An efficient Race Recognition Framework (RRF) is proposed that includes information collector (IC), face detection and preprocessing (FD&P), and RR modules. For the RR module, this study proposes two independent models. The first model is RR using a deep convolutional neural network (CNN) (the RR-CNN model). The second model (the RR-VGG model) is a fine-tuning model for RR based on VGG, the famous trained model for object recognition. In order to examine the performance of our proposed framework, we perform an experiment on our dataset named VNFaces, composed specifically of images collected from Facebook pages of Vietnamese people, to compare the accuracy between RR-CNN and RR-VGG. The experimental results show that for the VNFaces dataset, the RR-VGG model with augmented input images yields the best accuracy at 88.87% while RR-CNN, an independent and lightweight model, yields 88.64% accuracy. The extension experiments conducted prove that our proposed models could be applied to other race dataset problems such as Japanese, Chinese, or Brazilian with over 90% accuracy; the fine-tuning RR-VGG model achieved the best accuracy and is recommended for most scenarios.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jia Qu ◽  
Nobuyuki Hiruta ◽  
Kensuke Terai ◽  
Hirokazu Nosato ◽  
Masahiro Murakawa ◽  
...  

Deep learning using convolutional neural networks (CNNs) is a distinguished tool for many image classification tasks. Due to its outstanding robustness and generalization, it is also expected to play a key role to facilitate advanced computer-aided diagnosis (CAD) for pathology images. However, the shortage of well-annotated pathology image data for training deep neural networks has become a major issue at present because of the high-cost annotation upon pathologist’s professional observation. Faced with this problem, transfer learning techniques are generally used to reinforcing the capacity of deep neural networks. In order to further boost the performance of the state-of-the-art deep neural networks and alleviate insufficiency of well-annotated data, this paper presents a novel stepwise fine-tuning-based deep learning scheme for gastric pathology image classification and establishes a new type of target-correlative intermediate datasets. Our proposed scheme is deemed capable of making the deep neural network imitating the pathologist’s perception manner and of acquiring pathology-related knowledge in advance, but with very limited extra cost in data annotation. The experiments are conducted with both well-annotated gastric pathology data and the proposed target-correlative intermediate data on several state-of-the-art deep neural networks. The results congruously demonstrate the feasibility and superiority of our proposed scheme for boosting the classification performance.


Author(s):  
Yi-Quan Li ◽  
Hao-Sen Chang ◽  
Daw-Tung Lin

In the field of computer vision, large-scale image classification tasks are both important and highly challenging. With the ongoing advances in deep learning and optical character recognition (OCR) technologies, neural networks designed to perform large-scale classification play an essential role in facilitating OCR systems. In this study, we developed an automatic OCR system designed to identify up to 13,070 large-scale printed Chinese characters by using deep learning neural networks and fine-tuning techniques. The proposed framework comprises four components, including training dataset synthesis and background simulation, image preprocessing and data augmentation, the process of training the model, and transfer learning. The training data synthesis procedure is composed of a character font generation step and a background simulation process. Three background models are proposed to simulate the factors of the background noise and anti-counterfeiting patterns on ID cards. To expand the diversity of the synthesized training dataset, rotation and zooming data augmentation are applied. A massive dataset comprising more than 19.6 million images was thus created to accommodate the variations in the input images and improve the learning capacity of the CNN model. Subsequently, we modified the GoogLeNet neural architecture by replacing the FC layer with a global average pooling layer to avoid overfitting caused by a massive amount of training data. Consequently, the number of model parameters was reduced. Finally, we employed the transfer learning technique to further refine the CNN model using a small number of real data samples. Experimental results show that the overall recognition performance of the proposed approach is significantly better than that of prior methods and thus demonstrate the effectiveness of proposed framework, which exhibited a recognition accuracy as high as 99.39% on the constructed real ID card dataset.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


Sign in / Sign up

Export Citation Format

Share Document