scholarly journals Multi-Modal Pain Intensity Assessment Based on Physiological Signals: A Deep Learning Perspective

2021 ◽  
Vol 12 ◽  
Author(s):  
Patrick Thiam ◽  
Heinke Hihn ◽  
Daniel A. Braun ◽  
Hans A. Kestler ◽  
Friedhelm Schwenker

Traditional pain assessment approaches ranging from self-reporting methods, to observational scales, rely on the ability of an individual to accurately assess and successfully report observed or experienced pain episodes. Automatic pain assessment tools are therefore more than desirable in cases where this specific ability is negatively affected by various psycho-physiological dispositions, as well as distinct physical traits such as in the case of professional athletes, who usually have a higher pain tolerance as regular individuals. Hence, several approaches have been proposed during the past decades for the implementation of an autonomous and effective pain assessment system. These approaches range from more conventional supervised and semi-supervised learning techniques applied on a set of carefully hand-designed feature representations, to deep neural networks applied on preprocessed signals. Some of the most prominent advantages of deep neural networks are the ability to automatically learn relevant features, as well as the inherent adaptability of trained deep neural networks to related inference tasks. Yet, some significant drawbacks such as requiring large amounts of data to train deep models and over-fitting remain. Both of these problems are especially relevant in pain intensity assessment, where labeled data is scarce and generalization is of utmost importance. In the following work we address these shortcomings by introducing several novel multi-modal deep learning approaches (characterized by specific supervised, as well as self-supervised learning techniques) for the assessment of pain intensity based on measurable bio-physiological data. While the proposed supervised deep learning approach is able to attain state-of-the-art inference performances, our self-supervised approach is able to significantly improve the data efficiency of the proposed architecture by automatically generating physiological data and simultaneously performing a fine-tuning of the architecture, which has been previously trained on a significantly smaller amount of data.

2021 ◽  
Author(s):  
Vladislav Vasilevich Alekseev ◽  
Denis Mihaylovich Orlov ◽  
Dmitry Anatolevich Koroteev

Abstract The approaches of building and methods of using the digital core are currently developing rapidly. The use of these methods makes it possible to obtain petrophysical information by non-destructive methods quickly. Digital rock physics includes two main stages: constructing models and modeling various physical processes on the obtained models. Our work proposes using deep learning methods for mineral and pore space segmentation instead of classical methods such as threshold image processing. Deep neural networks have long been able to show their advantages in many areas of computer vision. This paper proposes and tests methods that help identify different minerals in images from a scanning electron microscope. We used images of rocks of the Achimov formation, which are arkoses, as samples. We tested various deep neural networks such as LinkNet, U-Net, ResUNet, and pix2pix and identified those that performed best in segmentation.


2017 ◽  
Vol 1 (3) ◽  
pp. 83 ◽  
Author(s):  
Chandrasegar Thirumalai ◽  
Ravisankar Koppuravuri

In this paper, we will use deep neural networks for predicting the bike sharing usage based on previous years usage data. We will use because deep neural nets for getting higher accuracy. Deep neural nets are quite different from other machine learning techniques; here we can add many numbers of hidden layers to improve the accuracy of our prediction and the model can be trained in the way we want such that we can achieve the results we want. Nowadays many AI experts will say that deep learning is the best AI technique available now and we can achieve some unbelievable results using this technique. Now we will use that technique to predict bike sharing usage of a rental company to make sure they can take good business decisions based on previous years data.


2018 ◽  
Vol 63 (18) ◽  
pp. 185012 ◽  
Author(s):  
Faisal Mahmood ◽  
Richard Chen ◽  
Sandra Sudarsky ◽  
Daphne Yu ◽  
Nicholas J Durr

2020 ◽  
pp. 107754632092914
Author(s):  
Mohammed Alabsi ◽  
Yabin Liao ◽  
Ala-Addin Nabulsi

Deep learning has seen tremendous growth over the past decade. It has set new performance limits for a wide range of applications, including computer vision, speech recognition, and machinery health monitoring. With the abundance of instrumentation data and the availability of high computational power, deep learning continues to prove itself as an efficient tool for the extraction of micropatterns from machinery big data repositories. This study presents a comparative study for feature extraction capabilities using stacked autoencoders considering the use of expert domain knowledge. Case Western Reserve University bearing dataset was used for the study, and a classifier was trained and tested to extract and visualize features from 12 different failure classes. Based on the raw data preprocessing, four different deep neural network structures were studied. Results indicated that integrating domain knowledge with deep learning techniques improved feature extraction capabilities and reduced the deep neural networks size and computational requirements without the need for exhaustive deep neural networks architecture tuning and modification.


2021 ◽  
Vol 11 (18) ◽  
pp. 8441
Author(s):  
Anh-Cang Phan ◽  
Ngoc-Hoang-Quyen Nguyen  ◽  
Thanh-Ngoan Trieu ◽  
Thuong-Cang Phan

Drowsy driving is one of the common causes of road accidents resulting in injuries, even death, and significant economic losses to drivers, road users, families, and society. There have been many studies carried out in an attempt to detect drowsiness for alert systems. However, a majority of the studies focused on determining eyelid and mouth movements, which have revealed many limitations for drowsiness detection. Besides, physiological measures-based studies may not be feasible in practice because the measuring devices are often not available on vehicles and often uncomfortable for drivers. In this research, we therefore propose two efficient methods with three scenarios for doze alert systems. The former applies facial landmarks to detect blinks and yawns based on appropriate thresholds for each driver. The latter uses deep learning techniques with two adaptive deep neural networks based on MobileNet-V2 and ResNet-50V2. The second method analyzes the videos and detects driver’s activities in every frame to learn all features automatically. We leverage the advantage of the transfer learning technique to train the proposed networks on our training dataset. This solves the problem of limited training datasets, provides fast training time, and keeps the advantage of the deep neural networks. Experiments were conducted to test the effectiveness of our methods compared with other methods. Empirical results demonstrate that the proposed method using deep learning techniques can achieve a high accuracy of 97% . This study provides meaningful solutions in practice to prevent unfortunate automobile accidents caused by drowsiness.


Author(s):  
Dong-Dong Chen ◽  
Wei Wang ◽  
Wei Gao ◽  
Zhi-Hua Zhou

Deep neural networks have witnessed great successes in various real applications, but it requires a large number of labeled data for training. In this paper, we propose tri-net, a deep neural network which is able to use massive unlabeled data to help learning with limited labeled data. We consider model initialization, diversity augmentation and pseudo-label editing simultaneously. In our work, we utilize output smearing to initialize modules, use fine-tuning on labeled data to augment diversity and eliminate unstable pseudo-labels to alleviate the influence of suspicious pseudo-labeled data. Experiments show that our method achieves the best performance in comparison with state-of-the-art semi-supervised deep learning methods. In particular, it achieves 8.30% error rate on CIFAR-10 by using only 4000 labeled examples.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
L. Apolinário ◽  
N. F. Castro ◽  
M. Crispim Romão ◽  
J. G. Milhano ◽  
R. Pedro ◽  
...  

Abstract An important aspect of the study of Quark-Gluon Plasma (QGP) in ultrarelativistic collisions of heavy ions is the ability to identify, in experimental data, a subset of the jets that were strongly modified by the interaction with the QGP. In this work, we propose studying Deep Learning techniques for this purpose. Samples of Z+jet events were simulated in vacuum (pp collisions) and medium (PbPb collisions) and used to train Deep Neural Networks with the objective of discriminating between medium- and vacuum-like jets within the medium (PbPb) sample. Dedicated Convolutional Neural Networks, Dense Neural Networks and Recurrent Neural Networks were developed and trained, and their performance was studied. Our results show the potential of these techniques for the identification of jet quenching effects induced by the presence of the QGP.


Author(s):  
Ekaterina Popova ◽  
Vladimir Spitsyn

This article is devoted to modern approaches for sentiment analysis of short Russian texts from social networks using deep neural networks. Sentiment analysis is the process of detecting, extracting, and classifying opinions, sentiments, and attitudes concerning different topics expressed in texts. The importance of this topic is linked to the growth and popularity of social networks, online recommendation services, news portals, and blogs, all of which contain a significant number of people's opinions on a variety of topics. In this paper, we propose machine-learning techniques with BERT and Word2Vec embeddings for tweets sentiment analysis. Two approaches were explored: (a) a method, of word embeddings extraction and using the DNN classifier; (b) refinement of the pre-trained BERT model. As a result, the fine- tuning BERT outperformed the functional method to solving the problem.


2020 ◽  
Vol 17 (1) ◽  
pp. 182-188 ◽  
Author(s):  
Mohit Sewak ◽  
Sanjay K. Sahay ◽  
Hemant Rathore

The recent wide applications of deep learning in multiple fields has shown a great progress, but to perform optimally, it requires the adjustment of various architectural features and hyper-parameters. Moreover, deep learning could be used with multiple varieties of architecture aimed at different objectives, e.g., autoencoders are popular for un-supervised learning applications for reducing the dimensionality of the dataset. Similarly, deep neural networks are popular for supervised learning applications viz., classification, regression, etc. Besides the type of deep learning architecture, some other decision criteria and parameter selection decisions are required for determining each layer size, number of layers, activation and loss functions for different layers, optimizer algorithm, regularization, etc. Thus, this paper aims to cover different choices available under each of these major and minor decision criteria for devising a neural network and to train it optimally for achieving the objectives effectively, e.g., malware detection, natural language processing, image recognition, etc.


Author(s):  
Ha Thanh Nguyen ◽  
Quan Dinh Dang ◽  
Anh Quang Tran

The email overload problem has been discussed in numerous email-related studies. One of the possible solutions to this problem is email prioritization, which is the act of automatically predicting the importance levels of received emails and sorting the user’s inbox accordingly. Several learning-based methods have been proposed to address the email prioritization problem using content features as well as social features. Although these methods have laid the foundation works in this field of study, the reported performance is far from being practical. Recent works on deep neural networks have achieved good results in various tasks. In this paper, the authors propose a novel email prioritization model which incorporates several deep learning techniques and uses a combination of both content features and social features from email data. This method targets Vietnamese emails and is tested against a self-built Vietnamese email corpus. Conducted experiments explored the effects of different model configurations and compared the effectiveness of the new method to that of a previous work.


Sign in / Sign up

Export Citation Format

Share Document