Attitude determination method and experimental research based on MEMS IMU and magnetoresistive sensor

Author(s):  
Lei Wang ◽  
Jiulong Xu ◽  
Yongping Hao ◽  
Hui Li
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Liangliang An ◽  
Liangming Wang ◽  
Ning Liu ◽  
Jian Fu

In this paper, we present a novel multisensor combinatory attitude determination method that enables high-accuracy measurement of the attitude of a high rotational speed rigid-body aircraft. We analyze the external moments of the aircraft during flight and develop the method using theoretical deductions based on the motion equations of a rigid body rotating around the centroid. The proposed method fuses the data measured from GPS, gyrometer, and magnetometer and uses the improved unscented Kalman filter (UKF) algorithm to perform filtering. First, appropriate assumptions and simplifying approximations are made for around-centroid motion equations of a rigid body according to the motion characteristics of the high rotational speed aircraft. Using these assumptions and approximations, the constraint equations between the Euler attitude angles and flight-path angle, trajectory deflection angle are derived to serve as the state equation. Second, the roll angle with error is calculated using the geomagnetic field model and the geomagnetic intensity measured by a three-axis magnetometer and then fused with the angular velocity information obtained from the gyroscope for constructing the measurement equations. Finally, the state equations are discretized using the Runge–Kutta method during the UKF prediction stage, improving the prediction accuracy. Simulation results show that the proposed method can effectively determine the attitude information of the high rotational speed aircraft, achieving high level of reliability and accuracy thanks to the combination of information from GPS, gyroscope, and magnetometer.


2020 ◽  
Vol 12 (5) ◽  
pp. 747
Author(s):  
Peng Zhang ◽  
Yinzhi Zhao ◽  
Huan Lin ◽  
Jingui Zou ◽  
Xinzhe Wang ◽  
...  

The global navigation satellite system (GNSS)-based attitude determination system has attracted more and more attention with the advantages of having simplified algorithms, a low price and errors that do not accumulate over time. However, GNSS signals may have poor quality or lose lock in some epochs with the influence of signal fading and the multipath effect. When the direct attitude determination method is applied, the primary baseline may not be available (ambiguity is not fixed), leading to the inability of attitude determination. With the gradual popularization of low-cost receivers, making full use of spatial redundancy information of multiple antennas brings new ideas to the GNSS-based attitude determination method. In this paper, an attitude angle conversion algorithm, selecting an arbitrary baseline as the primary baseline, is derived. A multi-antenna attitude determination method based on primary baseline switching is proposed, which is performed on a self-designed embedded software and hardware platform. The proposed method can increase the valid epoch proportion and attitude information. In the land vehicle test, reference results output from a high-accuracy integrated navigation system were used to evaluate the accuracy and reliability. The results indicate that the proposed method is correct and feasible. The valid epoch proportion is increased by 16.2%, which can effectively improve the availability of attitude determination. The RMS of the heading, pitch and roll angles are 0.52°, 1.25° and 1.16°.


2017 ◽  
Vol 71 (1) ◽  
pp. 134-150
Author(s):  
Haiying Liu ◽  
Lei Xu ◽  
Xiaolin Meng ◽  
Xibei Chen ◽  
Junyi Li

Global Navigation Satellite System (GNSS) attitude determination and positioning play an important role in many navigation applications. However, the two GNSS-based problems are usually treated separately. This ignores the constraint information of the GNSS antenna array and the accuracy is limited. To improve the performance of navigation, an integrated attitude and position determination method based on an affine constraint model is presented. In the first part, the GNSS array model and affine constrained attitude determination method are compared with the unconstrained methods. Then the integrated attitude and position determination method is presented. The performance of the proposed method is tested with a series of static data and dynamic experimental GNSS data. The results show that the proposed method can improve the success rate of ambiguity resolution to further improve the accuracy of attitude determination and relative positioning compared to the unconstrained methods.


Sensors ◽  
2016 ◽  
Vol 16 (11) ◽  
pp. 1882 ◽  
Author(s):  
Hidehiko Sekiya ◽  
Takeshi Kinomoto ◽  
Chitoshi Miki

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Dandan Yuan ◽  
Wenjun Yi ◽  
Jun Guan

Improvement in attack accuracy of the spin projectiles is a very significant objective, which increases the overall combat efficiency of projectiles. The accurate determination of the projectile roll attitude is the recent objective of the efficient guidance and control. The roll measurement system for the spin projectile is commonly based on the magnetoresistive sensor. It is well known that the magnetoresistive sensor produces a sinusoidally oscillating signal whose frequency slowly decays with time, besides the possibility of blind spot. On the other hand, absolute sensors such as GPS have fixed errors even though the update rates are generally low. To earn the benefit while eliminating weaknesses from both types of sensors, a mathematical model using filtering technique can be designed to integrate the magnetoresistive sensor and GPS measurements. In this paper, a mathematical model is developed to integrate the magnetoresistive sensor and GPS measurements in order to get an accurate prediction of projectile roll attitude in a real flight time. The proposed model is verified using numerical simulations, which illustrated that the accuracy of the roll attitude measurement is improved.


2017 ◽  
Vol 11 (10) ◽  
pp. 1477-1482 ◽  
Author(s):  
Guobin Chang ◽  
Tianhe Xu ◽  
Qianxin Wang ◽  
Shengquan Li ◽  
Kailiang Deng

2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Jianli Li 1 ◽  
Yun Wang 1 ◽  
Pengfei Dang 1 ◽  
Zhaoxing Lu 1,2

The attitude determination method plays an important role in SINS/CNS integrated system for spacecraft. Since the misalignment angels are indirect measurements, the misalignment angle model used in the existing attitude determination method can cause transformation errors. To solve the problem, an attitude determination method based on convected Euler angle error model for SINS/CNS integrated system is proposed. The attitude error propagation is analyzed, and the convected Euler angle error model is derived. Furthermore, the state equation of SINS/CNS integrated system is established. The Kalman filter estimates and compensates the Euler angle errors. Finally, simulation results verified that the proposed method can improve the attitude accuracy compared to the conventional misalignment angle method.


Sign in / Sign up

Export Citation Format

Share Document