A real-time parallel combination segmentation method for aluminum surface defect images

Author(s):  
Xiu-Qin Huang ◽  
Xin-Bin Luo ◽  
Ren-Zhong Wang
Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 275
Author(s):  
Ruben Panero Martinez ◽  
Ionut Schiopu ◽  
Bruno Cornelis ◽  
Adrian Munteanu

The paper proposes a novel instance segmentation method for traffic videos devised for deployment on real-time embedded devices. A novel neural network architecture is proposed using a multi-resolution feature extraction backbone and improved network designs for the object detection and instance segmentation branches. A novel post-processing method is introduced to ensure a reduced rate of false detection by evaluating the quality of the output masks. An improved network training procedure is proposed based on a novel label assignment algorithm. An ablation study on speed-vs.-performance trade-off further modifies the two branches and replaces the conventional ResNet-based performance-oriented backbone with a lightweight speed-oriented design. The proposed architectural variations achieve real-time performance when deployed on embedded devices. The experimental results demonstrate that the proposed instance segmentation method for traffic videos outperforms the you only look at coefficients algorithm, the state-of-the-art real-time instance segmentation method. The proposed architecture achieves qualitative results with 31.57 average precision on the COCO dataset, while its speed-oriented variations achieve speeds of up to 66.25 frames per second on the Jetson AGX Xavier module.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jiawei Lian ◽  
Junhong He ◽  
Yun Niu ◽  
Tianze Wang

Purpose The current popular image processing technologies based on convolutional neural network have the characteristics of large computation, high storage cost and low accuracy for tiny defect detection, which is contrary to the high real-time and accuracy, limited computing resources and storage required by industrial applications. Therefore, an improved YOLOv4 named as YOLOv4-Defect is proposed aim to solve the above problems. Design/methodology/approach On the one hand, this study performs multi-dimensional compression processing on the feature extraction network of YOLOv4 to simplify the model and improve the feature extraction ability of the model through knowledge distillation. On the other hand, a prediction scale with more detailed receptive field is added to optimize the model structure, which can improve the detection performance for tiny defects. Findings The effectiveness of the method is verified by public data sets NEU-CLS and DAGM 2007, and the steel ingot data set collected in the actual industrial field. The experimental results demonstrated that the proposed YOLOv4-Defect method can greatly improve the recognition efficiency and accuracy and reduce the size and computation consumption of the model. Originality/value This paper proposed an improved YOLOv4 named as YOLOv4-Defect for the detection of surface defect, which is conducive to application in various industrial scenarios with limited storage and computing resources, and meets the requirements of high real-time and precision.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Feilong Kang ◽  
Chunguang Wang ◽  
Jia Li ◽  
Zheying Zong

In the video monitoring of piglets in pig farms, study of the precise segmentation of foreground objects is the work of advanced research on target tracking and behavior recognition. In view of the noninteractive and real-time requirements of such a video monitoring system, this paper proposes a method of image segmentation based on an improved noninteractive GrabCut algorithm. The functions of preserving edges and noise reduction are realized through bilateral filtering. An adaptive threshold segmentation method is used to calculate the local threshold and to complete the extraction of the foreground target. The image is simplified by morphological processing; the background interference pixels, such as details in the grille and wall, are filtered, and the foreground target marker matrix is established. The GrabCut algorithm is used to split the pixels of multiple foreground objects. By comparing the segmentation results of various algorithms, the results show that the segmentation algorithm proposed in this paper is efficient and accurate, and the mean range of structural similarity is [0.88, 1]. The average processing time is 1606 ms, and this method satisfies the real-time requirement of an agricultural video monitoring system. Feature vectors such as edges and central moments are calculated and the database is well established for feature extraction and behavior identification. This method provides reliable foreground segmentation data for the intelligent early warning of a video monitoring system.


2020 ◽  
Vol 57 (10) ◽  
pp. 101501
Author(s):  
沈晓海 Shen Xiaohai ◽  
栗泽昊 Li Zehao ◽  
李敏 Li Min ◽  
徐晓龙 Xu Xiaolong ◽  
张学武 Zhang Xuewu

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4356 ◽  
Author(s):  
Chi-Yi Tsai ◽  
Hao-Wei Chen

This paper presents an improved Convolutional Neural Network (CNN) architecture to recognize surface defects of the Calcium Silicate Board (CSB) using visual image information based on a deep learning approach. The proposed CNN architecture is inspired by the existing SurfNet architecture and is named SurfNetv2, which comprises a feature extraction module and a surface defect recognition module. The output of the system is the recognized defect category on the surface of the CSB. In the collection of the training dataset, we manually captured the defect images presented on the surface of the CSB samples. Then, we divided these defect images into four categories, which are crash, dirty, uneven, and normal. In the training stage, the proposed SurfNetv2 is trained through an end-to-end supervised learning method, so that the CNN model learns how to recognize surface defects of the CSB only through the RGB image information. Experimental results show that the proposed SurfNetv2 outperforms five state-of-the-art methods and achieves a high recognition accuracy of 99.90% and 99.75% in our private CSB dataset and the public Northeastern University (NEU) dataset, respectively. Moreover, the proposed SurfNetv2 model achieves a real-time computing speed of about 199.38 fps when processing images with a resolution of 128 × 128 pixels. Therefore, the proposed CNN model has great potential for real-time automatic surface defect recognition applications.


2017 ◽  
Vol 14 (6) ◽  
pp. 172988141774813 ◽  
Author(s):  
Hoang Vu ◽  
Hieu Trong Nguyen ◽  
Phuong Minh Chu ◽  
Weiqiang Zhang ◽  
Seoungjae Cho ◽  
...  

2013 ◽  
Vol 433-435 ◽  
pp. 915-918 ◽  
Author(s):  
Hai Lun Zhang ◽  
Xing Guang Qi ◽  
Xiao Ting Li

This paper presents the research of several key technologies during the implementation of cold-rolling aluminum surface defect detection system, including the difficulty of achieving these key technologies and the improvement of image processing algorithm. Through the installation and commissioning on actual production line, summarize and analyze the requirements of the hardware and software design for highly reflective aluminum plate, to achieve the control of product quality at present.


2014 ◽  
Vol 945-949 ◽  
pp. 1830-1836 ◽  
Author(s):  
Qi Jie Zhao ◽  
Peng Cao ◽  
Qing Xu Meng

Real-time detecting information marked on billets is important for automatically manufacturing and management in steelworks. But due to the tough production environments in steel enterprises, capturing and identifying characters marked on hot billets have many challenges. This paper presents a real-time image capturing and segmenting method with machine vision for characters marked on hot billets, and characters area is located based on color information of images. Furthermore, considering the marked characters are often slant, we proposed a kind of characters skew correction method to adjust the alignment of characters, and then segment characters into singles for recognition. Finally, with the proposed method, we have conducted some experiments in Baosteel Company. The result shows that our method can achieve 97% segmentation rate if we select proper image acquisition device and preprocessing algorithm. Additionally, it provides a new way for steel enterprise real-time capturing and segmenting marked characters image.


Sign in / Sign up

Export Citation Format

Share Document