Autonomous RL: Autonomous Vehicle Obstacle Avoidance in a Dynamic Environment using MLP-SARSA Reinforcement Learning

Author(s):  
C. S. Arvind ◽  
J. Senthilnath
Author(s):  
Kiwon Yeom ◽  

—The applications of mobile robots are more and more diverse and extensive. The motion planning of the mobile robots should be considered in aspect of effectiveness of the navigation, and collision-free motion is essential for mobile robots. In addition, dynamic path planning of unknown environment has always been a challenge for mobile robots. Aiming at navigation problems, this paper proposes a Deep Reinforcement Learning (DRL) based path planning algorithm which can navigate nonholonomic car-like mobile robots in an unknown dynamic environment. The output of the learned network are the robot’s translational and angular velocities for the next time step. The method combines path planning on a 2D grid with reinforcement learning and does not need any supervision. The experiments illustrate that our trained policy can be applied to solve complex navigation tasks. Furthermore, we compare the performance of our learned controller to the popular approaches. Keywords— Deep reinforcement learning, path planning, , artificial neural network, mobile robot, autonomous vehicle


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1468
Author(s):  
Razin Bin Issa ◽  
Modhumonty Das ◽  
Md. Saferi Rahman ◽  
Monika Barua ◽  
Md. Khalilur Rhaman ◽  
...  

Autonomous vehicle navigation in an unknown dynamic environment is crucial for both supervised- and Reinforcement Learning-based autonomous maneuvering. The cooperative fusion of these two learning approaches has the potential to be an effective mechanism to tackle indefinite environmental dynamics. Most of the state-of-the-art autonomous vehicle navigation systems are trained on a specific mapped model with familiar environmental dynamics. However, this research focuses on the cooperative fusion of supervised and Reinforcement Learning technologies for autonomous navigation of land vehicles in a dynamic and unknown environment. The Faster R-CNN, a supervised learning approach, identifies the ambient environmental obstacles for untroubled maneuver of the autonomous vehicle. Whereas, the training policies of Double Deep Q-Learning, a Reinforcement Learning approach, enable the autonomous agent to learn effective navigation decisions form the dynamic environment. The proposed model is primarily tested in a gaming environment similar to the real-world. It exhibits the overall efficiency and effectiveness in the maneuver of autonomous land vehicles.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2244
Author(s):  
S. M. Yang ◽  
Y. A. Lin

Safe path planning for obstacle avoidance in autonomous vehicles has been developed. Based on the Rapidly Exploring Random Trees (RRT) algorithm, an improved algorithm integrating path pruning, smoothing, and optimization with geometric collision detection is shown to improve planning efficiency. Path pruning, a prerequisite to path smoothing, is performed to remove the redundant points generated by the random trees for a new path, without colliding with the obstacles. Path smoothing is performed to modify the path so that it becomes continuously differentiable with curvature implementable by the vehicle. Optimization is performed to select a “near”-optimal path of the shortest distance among the feasible paths for motion efficiency. In the experimental verification, both a pure pursuit steering controller and a proportional–integral speed controller are applied to keep an autonomous vehicle tracking the planned path predicted by the improved RRT algorithm. It is shown that the vehicle can successfully track the path efficiently and reach the destination safely, with an average tracking control deviation of 5.2% of the vehicle width. The path planning is also applied to lane changes, and the average deviation from the lane during and after lane changes remains within 8.3% of the vehicle width.


2021 ◽  
Vol 11 (4) ◽  
pp. 1514 ◽  
Author(s):  
Quang-Duy Tran ◽  
Sang-Hoon Bae

To reduce the impact of congestion, it is necessary to improve our overall understanding of the influence of the autonomous vehicle. Recently, deep reinforcement learning has become an effective means of solving complex control tasks. Accordingly, we show an advanced deep reinforcement learning that investigates how the leading autonomous vehicles affect the urban network under a mixed-traffic environment. We also suggest a set of hyperparameters for achieving better performance. Firstly, we feed a set of hyperparameters into our deep reinforcement learning agents. Secondly, we investigate the leading autonomous vehicle experiment in the urban network with different autonomous vehicle penetration rates. Thirdly, the advantage of leading autonomous vehicles is evaluated using entire manual vehicle and leading manual vehicle experiments. Finally, the proximal policy optimization with a clipped objective is compared to the proximal policy optimization with an adaptive Kullback–Leibler penalty to verify the superiority of the proposed hyperparameter. We demonstrate that full automation traffic increased the average speed 1.27 times greater compared with the entire manual vehicle experiment. Our proposed method becomes significantly more effective at a higher autonomous vehicle penetration rate. Furthermore, the leading autonomous vehicles could help to mitigate traffic congestion.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaojun Zhu ◽  
Yinghao Liang ◽  
Hanxu Sun ◽  
Xueqian Wang ◽  
Bin Ren

Purpose Most manufacturing plants choose the easy way of completely separating human operators from robots to prevent accidents, but as a result, it dramatically affects the overall quality and speed that is expected from human–robot collaboration. It is not an easy task to ensure human safety when he/she has entered a robot’s workspace, and the unstructured nature of those working environments makes it even harder. The purpose of this paper is to propose a real-time robot collision avoidance method to alleviate this problem. Design/methodology/approach In this paper, a model is trained to learn the direct control commands from the raw depth images through self-supervised reinforcement learning algorithm. To reduce the effect of sample inefficiency and safety during initial training, a virtual reality platform is used to simulate a natural working environment and generate obstacle avoidance data for training. To ensure a smooth transfer to a real robot, the automatic domain randomization technique is used to generate randomly distributed environmental parameters through the obstacle avoidance simulation of virtual robots in the virtual environment, contributing to better performance in the natural environment. Findings The method has been tested in both simulations with a real UR3 robot for several practical applications. The results of this paper indicate that the proposed approach can effectively make the robot safety-aware and learn how to divert its trajectory to avoid accidents with humans within the workspace. Research limitations/implications The method has been tested in both simulations with a real UR3 robot in several practical applications. The results indicate that the proposed approach can effectively make the robot be aware of safety and learn how to change its trajectory to avoid accidents with persons within the workspace. Originality/value This paper provides a novel collision avoidance framework that allows robots to work alongside human operators in unstructured and complex environments. The method uses end-to-end policy training to directly extract the optimal path from the visual inputs for the scene.


Sign in / Sign up

Export Citation Format

Share Document