Automatic Classification of Brain Tumor by in Vivo MRS Data Based on LDA and SVM

Author(s):  
Long Wang ◽  
Suiren Wan ◽  
Yu Sun ◽  
Bing Zhang ◽  
Xin Zhang
2021 ◽  
Author(s):  
Gabriela Torres ◽  
Melissa C. Caughey ◽  
Keerthi Anand ◽  
Jonathon W. Homeister ◽  
Mark A. Farber ◽  
...  

2021 ◽  
Vol 38 (3) ◽  
pp. 547-554
Author(s):  
Vasileios Papageorgiou

Brain tumor detection or brain tumor classification is one of the most challenging problems in modern medicine, where patients suffering from benign or malignant brain tumors are usually characterized by low life expectancy making the necessity of a punctual and accurate diagnosis mandatory. However, even today, this kind of diagnosis is based on manual classification of magnetic resonance imaging (MRI), culminating in inaccurate conclusions especially when they derive from inexperienced doctors. Hence, trusted, automatic classification schemes are essential for the reduction of humans’ death rate due to this major chronic disease. In this article, we propose an automatic classification tool, using a computationally economic convolutional neural network (CNN), for the purposes of a binary problem concerning MRI images depicting the existence or the absence of brain tumors. The proposed model is based on a dataset containing real MRI images of both classes with nearly perfect validation-testing accuracy and low computational complexity, resulting a very fast and reliable training-validation process. During our analysis we compare the diagnostic capacity of three alternative loss functions, validating the appropriateness of cross entropy function, while underlining the capability of an alternative loss function named Jensen-Shannon divergence since our model accomplished nearly excellent testing accuracy, as with cross-entropy. The multiple validation tests applied, enhancing the robustness of the produced results, render this low-complexity CNN structure as an ideal and trustworthy medical aid for the classification of small datasets.


Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


Author(s):  
Yashpal Jitarwal ◽  
Tabrej Ahamad Khan ◽  
Pawan Mangal

In earlier times fruits were sorted manually and it was very time consuming and laborious task. Human sorted the fruits of the basis of shape, size and color. Time taken by human to sort the fruits is very large therefore to reduce the time and to increase the accuracy, an automatic classification of fruits comes into existence.To improve this human inspection and reduce time required for fruit sorting an advance technique is developed that accepts information about fruits from their images, and is called as Image Processing Technique.


Sign in / Sign up

Export Citation Format

Share Document