The Optimum Path Selection Mechanism for Inter-PAN Communication Using ZigBee

Author(s):  
Jihyuk Heo ◽  
Choong Seon Hong
Author(s):  
Pallavi Sharma, Anil Sagar, Mohit Marwaha

Vehicular Ad-hoc Networks (VANETs) is an emerging network technology derived from ad-hoc networks. This paper provides the state-of-the-art of VANETs and provides optimum proposal by improving Quality of Service (QoS.) Today, wireless systems are preferred over wired systems and these are gaining popularity as it provides wireless connectivity to the users irrespective of their geographic position, VANET is one of them. VANETs are installed to minimize the risk of road accidents and to improve passenger comfort by permitting the vehicles to exchange various types of data. In this paper, the Signal Strength based Optimum Path Selection (SSOPS) based solution on how to mitigate the QoS issues that exists while using the existing methods are discussed. Moreover, the solution has been tested using NS2 software using various parameters.


Author(s):  
Uppalapati Srilakshmi, Et. al.

Due to the specific design of the network upon the requirements of the demands as well as the situation at which the setting up of a physical network is impossible, a significant role is played by mobile ad-hoc network (MANET) in the applications of military. Various critical tasks like robust & dynamic military workstations, devices as well as smaller sub-networks within the battle field are handled by the presented network type controls the infrastructure less communication. A highly demand of the efficient routing protocol’s design is existing which ensures safety as well as reliability to transmit the extremely vulnerable as well as the secret military data within the defense networks. The designing of an energy efficient layer routing protocol within the network on behalf of the military applications is done in this method and the simulation is done with the help of a novel cross layer approach of design for increasing the reliability as well as the lifetime of the network. However, the optimum path selection is not allowed by PDO-AODV technique. Therefore, a novel ACO-DAEE (Ant colony optimization with delay aware energy efficient) to select an optimum path as well as to mitigate the delay time within the network system is proposed. Maintaining the optimum paths within the network while transmitting the data effectively is the major objective. With respect to packet delivery ratio, end to end delay, and throughput, it is indicated by the simulation outputs that the performance of ACO-ADEE is quite good. The efficiency of this technique is verified in the simulation outcomes using NS2 software.


2021 ◽  
Author(s):  
Zhongyu MA ◽  
Yanxing Liu ◽  
Qun Guo ◽  
Xiaochao Dang ◽  
Zhanjun Hao ◽  
...  

Abstract Internet of Remote Things (IoRT) is widely used in both military and civilian applications. However, due to the unique characteristics, which is characterized as long-distance and high-latency, the design of the routing protocol is a great challenge of IoRT. In this paper, a QoS-oriented and traffic-aware multi-path routing protocol (QoTa-MRP) is proposed for IoRT. QoTa-MRP is composed of two parts. The first part is the link traffic-aware based multi-paths source route discovery mechanism, which is used to establish multi-paths with lower link disjoint degree. The second part is path similarity and traffic priority based multi-path selection mechanism, which is used to determine the transmission mode of the traffic flows to enhance the reliability or effectiveness of the transmission. Simultaneously, the protocol is theoretically analyzed in terms of the successful transmission rate of routing transmission data packet. Finally, the dynamic source routing, which is a very representative protocol and is usually used as the baseline comparison protocol, is revisited for the performance verification of the QoTa-MRP in IoRT. It is shown in the simulation results that there are significant superiorities of QoTa-MRP than that of DSR in terms of network throughput, packet loss rate and routing packet header overhead in IoRT.


Author(s):  
N. Zarrinpanjeh ◽  
F. Dadrass Javan ◽  
A. Naji ◽  
H. Azadi ◽  
P. De Maeyer ◽  
...  

Abstract. The successful conduct of a rescue mission in urban areas is directly related to the timely deployment of equipment and personnel to the incident location which justifies the quest for optimum path selection for emergency purposes. In this study, it is attempted to use Ant Colony Optimization (ACO) to find the optimum paths between fire stations and incident locations. It is also attempted to build up an evaluation tool using ACO to detect critical road segments that the overall accessibility to fire station services throughout the urban area is constituted upon their excellent functionality. Therefore, an ACO solution is designed to find optimum paths between the fire station and some randomly distributed incident locations. Regarding different variants of ACO, the algorithm enjoys the Simple Ant Colony Optimization deployment strategy combined with Ant Algorithm Transition rules. Iteration best pheromone updating is also used as the pheromone reinforcement strategy. The cost function used to optimize the path considers the shortest Euclidean distance on the network. The results explicitly state that the proposed method is successful to create the optimum path in 95.45 percent of all times, compared to Dijkstra deterministic approaches. Moreover, the pheromone map as an indicator of the criticality of road elements is generated and discussed. Visual inspection shows that the pheromone map is verified as the road criticality map concerning fire station access to the region and therefore pre-emptive measures can be defined by analyzing the generated pheromone map.


Sign in / Sign up

Export Citation Format

Share Document