Penta-band Antenna with Defected Ground Structure for Wireless Communication Applications

Author(s):  
Syed Ali Ahmad ◽  
Syeda Iffat Naqvi ◽  
Mahnoor Khalid ◽  
Yasar Amin ◽  
Jonathan Loo ◽  
...  
2018 ◽  
Vol 7 (1) ◽  
pp. 1-6 ◽  
Author(s):  
S. Sah ◽  
M. R. Tripathy ◽  
A. Mittal

A novel dual  layer rectangular printed Antenna based on loop type Frequency selective surfaces with five concentric rings and I shaped defected ground structure (DGS) is designed and investigated. The deigned antenna is tested for application in C band, WiFi devices and some cordless telephones and X band radiolocation, airborne and naval radars as multiband  operational frequencies are at 5.5GHz, 6.81GHz, 9.3GHz and thus covers two wireless communication band C Band (4 to 8GHz ) and  X band (8 to 12 GHz) The bandwidth is 200MHz, 300MHz and 1GHz respectively and measured gain of this designed antenna are 2.42dBi against 5.5GHz, 2.80dBi against 6.81GHz, 6.76dBi against 9.3GHz. The proposed antenna in addition to multiband operation also exhibits minituarization.The Floquet port technique is used to analyse concentric rings. The Results comparison of proposed structure with the basic dual layer antenna resonaing at 5.5GHz  shows the patch area is reduced by 58.15% while the volume of the antenna is reduced by 81.5%. 


2018 ◽  
Vol 12 (9) ◽  
pp. 1554-1558 ◽  
Author(s):  
Tejpal Jhajharia ◽  
Vivekanand Tiwari ◽  
Dinesh Yadav ◽  
Sanyog Rawat ◽  
Deepak Bhatnagar

2018 ◽  
Vol 7 (5) ◽  
pp. 118-123 ◽  
Author(s):  
P. Pathak ◽  
P. K. Singhal

This paper reports a new design of broadband monopole patch antenna. The proposed antenna possess corner truncated rectangular patch with slits and defected ground structure, these modifications considerably improves the impedance bandwidth to 41.29% over a wideband (5.1–7.59 GHz). The design is appropriate for wireless communication including WLAN IEEE 802.11 g/a (5.15–5.35 GHz and 5.725–5.825 GHz) and C Band (4–8 GHz) applications. An antenna prototype is fabricated using FR-4 with an electrical permittivity of 4.4. Experimental and numerical simulations of antenna’s radiation characteristic are also reported and exhibits good concurrence.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1735 ◽  
Author(s):  
Shahid Ullah ◽  
Cunjun Ruan ◽  
Muhammad Shahzad Sadiq ◽  
Tanveer Ul Haq ◽  
Ayesha Kosar Fahad ◽  
...  

This paper presents a new shape (s-shape monopole) of a super wideband antenna using stepped meander lines, a quarter waveguide transformer feeding line, and a defected ground structure (DGS). The antenna will be used for multiple wireless communication applications like WIMAX/WLAN/ISM/UWB, and also for several wireless communication applications. The total dimensions of the proposed antenna are 35 mm × 35 mm × 1.57 mm or 0.36 λo × 0.36 λo × 0.016 λo, which are the corresponding electrical dimensions with free-space wavelength (λo) at the lower operating frequency. The antenna is designed and simulated into two steps: the first (Antenna 1) covers a bandwidth of 18.2 GHz, while the second (Antenna 2, using DGS) covers a super wide bandwidth of 37.82 GHz (3.08–40.9 GHz). The measured fractional bandwidth and bandwidth ratio of the antenna are 174.68% and 13.009:1, respectively, which is operating from 3.09–40.2 GHz. The maximum calculated gain and efficiency are 5.9 dBi and 92.7%, respectively. The time-domain performance is good due to the calculation of the system fidelity factor, group delay, and its linear and constant phase variation.


In this paper, microstrip ultra-wideband (UWB) filters using various defected ground structures are studied. Miniature microstrip filters employed in transceiver of modern wireless communication systems play vital role in controlling and regulating frequency response. DGS techniques are etched in ground plane to design compact microstrip based low pass, high pass, bandpass and band reject filters used in modern wireless systems. Various modified and hybrid defected ground structure techniques are employed to achieve high return loss, low insertion loss, ultra compactness, good selectivity and linearity in filters. Study reveals that the proper selection and incorporation of DGS techniques while designing microstrip ultra wideband filter optimizes the various vital parameters which enhances its performance and practicability for various modern wireless communication applications.


This report gives the research work carried out for design and analysis of MIMO antenna using two identical Microstrip slot radiators having enhanced isolation. The slot radiators offer compact size in order to accommodate other electronic components for reduction of volume of the wireless communication system. The defected ground structure is formed on the ground plane in between the antenna elements and feed lines to improve the isolation between them. The substrate used for constructing the antenna is FR-4 having the measurements of 26mm x 22mm x 0.8mm and it has the relative permittivity of 4.4. The printed microfilm strip etched on the opposite side of the substratum is used to couple the signal to each antenna. The HFSS software is used in this paper for designing the antenna and for checking the performance of the antenna. The -10dB bandwidth is 1.1GHz in the frequency range of 3.1 GHZ to 4.2GHz. The maximum isolation obtained after simulation is -23.1dB at 3.13GHz. The maximum gain of 2.26dB is obtained. Simulated radiation diagram of the designed antenna indicates that it is a good radiator for 5G applications in the sub 6GHz frequency band.


Sign in / Sign up

Export Citation Format

Share Document