scholarly journals Design of Compact MIMO Antenna for 5G Mobile Terminal

This report gives the research work carried out for design and analysis of MIMO antenna using two identical Microstrip slot radiators having enhanced isolation. The slot radiators offer compact size in order to accommodate other electronic components for reduction of volume of the wireless communication system. The defected ground structure is formed on the ground plane in between the antenna elements and feed lines to improve the isolation between them. The substrate used for constructing the antenna is FR-4 having the measurements of 26mm x 22mm x 0.8mm and it has the relative permittivity of 4.4. The printed microfilm strip etched on the opposite side of the substratum is used to couple the signal to each antenna. The HFSS software is used in this paper for designing the antenna and for checking the performance of the antenna. The -10dB bandwidth is 1.1GHz in the frequency range of 3.1 GHZ to 4.2GHz. The maximum isolation obtained after simulation is -23.1dB at 3.13GHz. The maximum gain of 2.26dB is obtained. Simulated radiation diagram of the designed antenna indicates that it is a good radiator for 5G applications in the sub 6GHz frequency band.

2019 ◽  
Vol 12 (3) ◽  
pp. 259-266 ◽  
Author(s):  
T. Azari-Nasab ◽  
CH. Ghobadi ◽  
B. Azarm ◽  
M. Majidzadeh

AbstractA multi-input multi-output (MIMO) antenna is designed and discussed for multi-band applications. The constituent antennas are composed of four L-shaped elements and a ground plane. When placed beside each other to form a MIMO antenna, a T-bar shaped parasitic structure is also embedded between the antennas on the backside of the substrate to increase the inter-element isolation. The triple-band performance of the antenna is observed at 2.15–2.73 GHz, 3.1–3.9 GHz, and 5.04–6 GHz. The isolation level of more than 20 is seen over the operating frequency range. The fabricated prototype of the MIMO antenna size is very compact (20 × 40 mm), printed on the FR4 substrate. Based on simulation and experimental results, the proposed design is useful for WiMAX and WLAN applications.


Author(s):  
Lan Ngoc Nguyen

A Multiple Input Multiple Output (MIMO) antenna with high isolation is proposed in this paper. The proposed antenna includes two sets of four elements (2 x 2) and it is yielded at the central frequency of 5.5 GHz for Wireless Local Area Network (WLAN) applications. Based on RT5880 with height of 1.575 mm, the overall size of MIMO antenna is 140 x 76 x 1.575 mm3. To get high isolation between antenna elements, a Defected Ground Structure (DGS) is integrated on ground plane. Besides, the MIMO antenna witnesses a large bandwidth of 9.1% and an efficiency of 90% while the pick gain is 8.5 dBi. The measurement results are compared to simulation ones to verify the performance of the proposed antenna.


Author(s):  
B Shruthi, Et. al.

A multiple-input-multiple-output lightweight printed ultrawideband antenna among a dimension about 40×50mm2to minimise the coupling between these two antennas, the proposed antenna with a quarter circular radiating patch, with defected ground structure is designed. The antenna developed by MIMO is highly isolated, stronger than -15dB. In the working band, from 2.67GHz to 14GHz. The simulation indicates that the proposed MIMO antenna will balance the complete enhanced band with a broad bandwidth by making use of CST. It operates at 5.83GHz, 8.07GHz, 12.28GHz and bandwidth tends to cover the ultrawideband range. UWB band and high isolation, that assemblesit perfect for any application of wireless modules in the UWB range, in order to minimise coupling. For indoor applications and wireless applications these frequency range is used.


In this paper, microstrip ultra-wideband (UWB) filters using various defected ground structures are studied. Miniature microstrip filters employed in transceiver of modern wireless communication systems play vital role in controlling and regulating frequency response. DGS techniques are etched in ground plane to design compact microstrip based low pass, high pass, bandpass and band reject filters used in modern wireless systems. Various modified and hybrid defected ground structure techniques are employed to achieve high return loss, low insertion loss, ultra compactness, good selectivity and linearity in filters. Study reveals that the proper selection and incorporation of DGS techniques while designing microstrip ultra wideband filter optimizes the various vital parameters which enhances its performance and practicability for various modern wireless communication applications.


2013 ◽  
Vol 347-350 ◽  
pp. 1695-1698 ◽  
Author(s):  
Wen Li ◽  
Jun Jun Wang ◽  
Yan Chao Sun ◽  
Xian Chao Meng

A compact and simple ultra-wideband microstrip-fed planar antenna with double bandstop characteristic is presented. The antenna consists of a rectangular monopole and two W-shaped slots inserted into the radiating patch and the truncated ground plane. By using a W-shaped slot defected ground structure (DGS) in the feedline, a stopband of 800 MHz (from 5.1 to 5.9 GHz) for band rejection of wireless local area network (WLAN) is achieved. To obtain the other stopband (from 3.7-4.4 GHz), a same shaped slot is etched into the monopole. Moreover, the two stopbands can be controlled by adjusting the length of the slot respectively. The simulation results show that the designed antenna, with a compact size of 38.5 mm×42.5 mm, has an impedance bandwidth of 2.811 GHz for voltage standing wave ratio (VSWR) less than 2, besides two frequency stopbands of 3.74.4 GHz and 5.15.9 GHz. Moreover, the main features including omnidirectional H-plane radiation patterns and the appropriate impedance characteristic are achieved by beveling the radiating patch and the microstrip-fed line of the proposed antenna.


2013 ◽  
Vol 273 ◽  
pp. 371-374
Author(s):  
Bao Ping Li ◽  
Yan Liang Zhang

Due to the frequency response periodicity of distributed transmission line, microstrip band-pass filter usually produces parasitic pass-band and outputs harmonics away from the center frequency of main pass-band. Based on the study of rectangular ring defected ground structure, a 5-order microstrip LPF(low-pass filter) was designed using the single-pole band-stop and slow-wave characteristics of the rectangular ring DGS(Defected Ground Structure) and SISS(Step-Impedance Shunt Stub) structure. Compared with traditional LPF, this LPF presents the advantages of compact size, low insertion loss, broad stop-band and high steep. It also validates the requirements of miniaturization and high performance for filters.


2018 ◽  
Vol 27 (3) ◽  
pp. 686-693 ◽  
Author(s):  
N. Pouyanfar ◽  
Ch. Ghobadi ◽  
J. Nourinia ◽  
K. Pedram ◽  
M Majidzadeh

2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


Sign in / Sign up

Export Citation Format

Share Document