Application of Unmanned Aircraft PID Control System for Roll, Pitch and Yaw Stability on Fixed Wings

Author(s):  
Try Susanto ◽  
Muhammad Bayu Setiawan ◽  
Akhmad Jayadi ◽  
Farli Rossi ◽  
Afrizal Hamdhi ◽  
...  
2018 ◽  
Vol 2 (1) ◽  
pp. 112
Author(s):  
Rendra Dwi Firmansyah ◽  
Budi Sumanto ◽  
Rella Mareta

Field mapping is important to know the potential of agricultural productivity in a region.Furthermore, field mapping can also be used to predict crops in a region. The mapping can be donethrough aerial photographs. Aerial photographs can be performed using manned aerial vehicle aswell as unmanned aerial vehicle. Currently, many aerial photographs are taken using unmannedaerial vehicle because the cost is much more affordable than using a manned aerial vehicle. One typeof unmanned aircraft used for aerial photographs is quadcopter. However taking aerial photographsusing a quadcopter often produces blurry images due to its instability. Instability of the quadcopter iscaused by several factors including sensor readings such as IMU, GPS, compass, and barometer,disturbance factors such as angina, and control systems that are less robust to quadcopter characters.To get a stable quadcopter, a control system that matches the quadcopter character and has aresistance to interference is needed. One of the control systems that can be applied to the quadcopteris the Robust PID control system. Reliability of the control system can be seen using ITAE (IntegralTime Absolute Error). The smaller the value of ITAE the better the control system. Some tuningmethods are done to get the Robust PID control system. The method used in this research is ZieglerNicols, fine tuned PID controller, and ITAE tuning method. The result of PID constant tuning is thenimplemented to quadcopter. In this study the response data was obtained by using IMU sensor. Theresult shows that of the three tuning methods implemented in the quadcopter, the Fine tuning methodgives better results than the others.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 487
Author(s):  
Fumitake Fujii ◽  
Akinori Kaneishi ◽  
Takafumi Nii ◽  
Ryu’ichiro Maenishi ◽  
Soma Tanaka

Proportional–integral–derivative (PID) control remains the primary choice for industrial process control problems. However, owing to the increased complexity and precision requirement of current industrial processes, a conventional PID controller may provide only unsatisfactory performance, or the determination of PID gains may become quite difficult. To address these issues, studies have suggested the use of reinforcement learning in combination with PID control laws. The present study aims to extend this idea to the control of a multiple-input multiple-output (MIMO) process that suffers from both physical coupling between inputs and a long input/output lag. We specifically target a thin film production process as an example of such a MIMO process and propose a self-tuning two-degree-of-freedom PI controller for the film thickness control problem. Theoretically, the self-tuning functionality of the proposed control system is based on the actor-critic reinforcement learning algorithm. We also propose a method to compensate for the input coupling. Numerical simulations are conducted under several likely scenarios to demonstrate the enhanced control performance relative to that of a conventional static gain PI controller.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


2013 ◽  
Vol 846-847 ◽  
pp. 321-324 ◽  
Author(s):  
Le Peng Song ◽  
Hua Bin Wang

As liquid level cascade system has the character the issue of non-linearity ,time variability and the overshoot,tradition PID control can not meet the requirement of precise molding system. So devise a self-_ adaptive fuzzy PID control .A self-_ adaptive fuzzy PID control combined PID to control calculate way and faintness to control the advantage of method, this text permits water tank to carry on mathematics model to design the double permit a water tank liquid misty PID string class control system. Matlab/Simulink and fuzzy logic toolbox are simulated to the single loop PID control system,the cascade control system and the cascade control system based on fuzzy self-tuning PID were simulated with Simulink. The analysis and simulation results indicate that the character issue of non-linearity ,time variability and the overshoot of the liquid level cascade control system based on a self-_ adaptive fuzzy PID controller are superior to previous of two methods.


Sign in / Sign up

Export Citation Format

Share Document