UCCTGAN: Unsupervised Clothing Color Transformation Generative Adversarial Network

Author(s):  
Shuming Sun ◽  
Xiaoqiang Li ◽  
Jide Li
Author(s):  
Saba Saleem ◽  
Javeria Amin ◽  
Muhammad Sharif ◽  
Muhammad Almas Anjum ◽  
Muhammad Iqbal ◽  
...  

AbstractWhite blood cells (WBCs) are a portion of the immune system which fights against germs. Leukemia is the most common blood cancer which may lead to death. It occurs due to the production of a large number of immature WBCs in the bone marrow that destroy healthy cells. To overcome the severity of this disease, it is necessary to diagnose the shapes of immature cells at an early stage that ultimately reduces the modality rate of the patients. Recently different types of segmentation and classification methods are presented based upon deep-learning (DL) models but still have some limitations. This research aims to propose a modified DL approach for the accurate segmentation of leukocytes and their classification. The proposed technique includes two core steps: preprocessing-based classification and segmentation. In preprocessing, synthetic images are generated using a generative adversarial network (GAN) and normalized by color transformation. The optimal deep features are extracted from each blood smear image using pretrained deep models i.e., DarkNet-53 and ShuffleNet. More informative features are selected by principal component analysis (PCA) and fused serially for classification. The morphological operations based on color thresholding with the deep semantic method are utilized for leukemia segmentation of classified cells. The classification accuracy achieved with ALL-IDB and LISC dataset is 100% and 99.70% for the classification of leukocytes i.e., blast, no blast, basophils, neutrophils, eosinophils, lymphocytes, and monocytes, respectively. Whereas semantic segmentation achieved 99.10% and 98.60% for average and global accuracy, respectively. The proposed method achieved outstanding outcomes as compared to the latest existing research works.


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


Author(s):  
Annapoorani Gopal ◽  
Lathaselvi Gandhimaruthian ◽  
Javid Ali

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.


2019 ◽  
Vol 52 (21) ◽  
pp. 291-296 ◽  
Author(s):  
Minsung Sung ◽  
Jason Kim ◽  
Juhwan Kim ◽  
Son-Cheol Yu

Sign in / Sign up

Export Citation Format

Share Document