scholarly journals Bounded Collision Force by the Sobolev Norm

Author(s):  
Kevin Haninger ◽  
Dragoljub Surdilovic
Keyword(s):  
2018 ◽  
Vol 11 (4) ◽  
pp. 983-1028 ◽  
Author(s):  
Thomas Duyckaerts ◽  
Jianwei Yang
Keyword(s):  
Blow Up ◽  

2012 ◽  
Vol 204-208 ◽  
pp. 4455-4459 ◽  
Author(s):  
Liu Hong Chang ◽  
Chang Bo Jiang ◽  
Man Jun Liao ◽  
Xiong Xiao

The explicit dynamic finite element theory is applied on the collision of ships with buoys for computer simulation. Using ANSYS/LS-DYNA finite element analysis software, the numerical simulation of the collision between the ton ship and the buoy with different structures and impact points. The collision force, deformation, displacement parameters and the weak impact points of a buoy are obtained. Based on the numerical simulation results, analysis of buoys and structural collision damages in anti-collision features are discussed, and several theoretical sugestions in anti-collision for the design of buoy are provided.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Tao Fu ◽  
Yang Liu ◽  
Zhixin Zhu

Damage to bridge structures caused by vessel collision is a risk for bridges crossing water traffic routes. Therefore, safety around vessel collision of existing and planned bridges is one of the key technical problems that must be solved by engineering technicians and bridge managers. In the evaluation of the reliability of the bridge structure, the two aspects of vessel-bridge collision force and structural resistance need to be considered. As there are many influencing parameters, the performance function is difficult to express by explicit function. This paper combines the moment method theory of structural reliability with finite element analysis and proposes a statistical moment method based on finite element analysis for the calculation of vessel-bridge collision reliability, which solves the structural reliability problem with a nonlinear implicit performance function. According to the probability model based on current velocity, vessel velocity, and vessel collision tonnage, the estimate points in the standard normal space are converted into estimate points in the original state space through the Rosenblatt reverse transform. According to the estimate points in the original state space and the simplified dynamic load model of vessel-bridge collision, the sample time-history curve of random vessel-bridge collision force is generated, the dynamic response of the bridge structure and the structural resistance of the bridge are calculated by establishing a finite element model, and the failure probability and reliability index of the bridge structure is calculated according to the fourth-moment method. The statistical moment based on the finite element analysis is based on the finite element analysis and the moment method theory of structural reliability. The statistical moment of the limited performance function is calculated through a quite small amount of confirmatory finite element analysis, and the structural reliability index and failure probability are obtained. The method can be widely used in existing finite element analysis programs, greatly reducing the number of finite element analyses needed and improving the efficiency of structural reliability analysis.


1999 ◽  
Vol 13 (1) ◽  
pp. 493-511 ◽  
Author(s):  
Hun-Ok Lim ◽  
Kazuo Tanie
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document