scholarly journals Research on Bridge Structure Reliability Evaluation due to Vessels Collison Based on a Statistical Moment Method

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Tao Fu ◽  
Yang Liu ◽  
Zhixin Zhu

Damage to bridge structures caused by vessel collision is a risk for bridges crossing water traffic routes. Therefore, safety around vessel collision of existing and planned bridges is one of the key technical problems that must be solved by engineering technicians and bridge managers. In the evaluation of the reliability of the bridge structure, the two aspects of vessel-bridge collision force and structural resistance need to be considered. As there are many influencing parameters, the performance function is difficult to express by explicit function. This paper combines the moment method theory of structural reliability with finite element analysis and proposes a statistical moment method based on finite element analysis for the calculation of vessel-bridge collision reliability, which solves the structural reliability problem with a nonlinear implicit performance function. According to the probability model based on current velocity, vessel velocity, and vessel collision tonnage, the estimate points in the standard normal space are converted into estimate points in the original state space through the Rosenblatt reverse transform. According to the estimate points in the original state space and the simplified dynamic load model of vessel-bridge collision, the sample time-history curve of random vessel-bridge collision force is generated, the dynamic response of the bridge structure and the structural resistance of the bridge are calculated by establishing a finite element model, and the failure probability and reliability index of the bridge structure is calculated according to the fourth-moment method. The statistical moment based on the finite element analysis is based on the finite element analysis and the moment method theory of structural reliability. The statistical moment of the limited performance function is calculated through a quite small amount of confirmatory finite element analysis, and the structural reliability index and failure probability are obtained. The method can be widely used in existing finite element analysis programs, greatly reducing the number of finite element analyses needed and improving the efficiency of structural reliability analysis.

2021 ◽  
Author(s):  
Xiaolin Zhang ◽  
Tianyi Guan ◽  
Lei Fan ◽  
Na Wang ◽  
Li Shang ◽  
...  

Author(s):  
Christopher M. Scheib ◽  
Raymond K. Newswanger ◽  
Allison M. Beese ◽  
Timothy Bowen ◽  
Gregory S. Lewis ◽  
...  

A Stellite 25 17mm tube valve based upon the Björk-Shiley Monostrut (BSM) valve design was developed for use in the Penn State Pediatric Ventricular Assist Device (PVAD) pump [1]. The hook of the valve was designed to hold a Delrin occluding disc in place while allowing the disc to tilt open 70 degrees from the closed position. Unlike common design constraints which remain in the elastic region, the hook experiences plastic deformation twice during the assembly process, making the material choice of Stellite 25 imperative. Stellite 25 is a cobalt-chromium-tungsten-nickel alloy (Co-20Cr-15W-10Ni) belonging to the material family of superalloys which are commonly used for wear-resistant applications exposed to heat, abrasion, and galling [2, 3]. Along with its excellent in vivo corrosion resistance [4], Stellite 25 exhibits high strength and ductility which permit the hook to be plastically deformed during disc installation while remaining below the strain to failure [3, 4]. Together these qualities make Stellite 25 an ideal material choice for the 17mm tube valve application. Predicting the resultant stresses and strains is critical for determining the safety and structural reliability of the Stellite 25 17mm tube valve for the PVAD after assembly. After performing finite element analysis (FEA), the simulation results were validated by deflection experiments and metallurgical investigations.


2013 ◽  
Vol 361-363 ◽  
pp. 1366-1369
Author(s):  
Tian Bo Peng ◽  
Bing Sun ◽  
Lei Han

The temperature deformation of Jiashao Bridge is a serious problem. In order to solve this problem effectively, a kind of rigid hinge structure is adopted in the middle of the bridge. Unit sparse plate bridge expansion joint for multi-direction-displacement is installed on the rigid hinge of this bridge. Vibration reduction tests are needed to verify the performance of the expansion joint and the service condition of the bridge structure. In this paper, a finite element analysis of the rigid hinge expansion joint is performed and a vibration reduction test platform is designed.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 736
Author(s):  
Linlin Wu ◽  
Kaiyuan Lu

A new bi-directional, simple-structured solenoid actuator for active locomotion capsule robots (CRs) is investigated in this paper. This active actuator consists of two permanent magnets (PMs) attached to the two ends of the capsule body and a vibration inner mass formed by a solenoidal coil with an iron core. The proposed CR, designed as a sealed structure without external legs, wheels, or caterpillars, can achieve both forward and backward motions driven by the internal collision force. This new design concept has been successfully confirmed on a capsule prototype. The measured displacements show that its movement can be easily controlled by changing the supplied current amplitude and frequency of the solenoid actuator. To validate the new bi-directional CR prototype, various experimental as well as finite element analysis results are presented in this paper.


2011 ◽  
Vol 90-93 ◽  
pp. 1720-1725
Author(s):  
Si Tian Chen ◽  
Ting Ting Yang ◽  
Li Qun Wu

The numerical simulation analysis, by using senior nonlinear finite element analysis software MSC.Marc, was achieved in this paper for the tie-replacing procedures of a steel tube tied-arch filled with concrete. Through this analysis, the control parameters were accurately determined for the installing of new ties and the removing of old ties. Results of numerical analysis ensured the bridge structure stable during the replacement, made the construction of safe and convenient, and played a guiding role in the maintenance and reinforcement. The successful experience could be referenced by other similar projects.


2012 ◽  
Vol 201-202 ◽  
pp. 721-724
Author(s):  
Bang Sheng Xing ◽  
Xue Feng Wang ◽  
Wei Li ◽  
Ning Ning Wang

The Parallel Finite Element Analysis Software ANSYS is used for transient dynamics of self-anchored suspension bridge. The paper studies influence on structure transform under a lotus function and frequency of self-anchored suspension bridge, vehicle together to drive to influence a little bit greatly towards self-anchored suspension bridge structure, difference drive to Self-anchored Suspension Bridge the structure influence smaller, VonMises stress of Suspension Bridge medium node will decrease, when angle frequencies augment, conclusions have instruction function to Self-anchored Suspension Bridge design and construction.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 1107-1117
Author(s):  
Li Lai

Abstract In the traditional finite element analysis method, when simulating the feasibility of aseismic structure design of long-span bridges, only finite element analysis is carried out on the bridge structure without considering the aseismic situation of the aseismic structure of the bridge under different schemes, which leads to one-sidedness of the simulation results. Therefore, a new simulation method for the feasibility study of seismic design of long-span bridges is proposed in this paper. 5 seismic isolation schemes for long-span bridge structures are designed. The lock-up devices and liquid viscous dampers are deployed in bridge structure. Numerical simulation of bridge structure is carried out by establishing calculation model and improved hierarchical Kerr spring model. The responses of long-span bridges under seismic loading for 5 seismic isolation schemes are analyzed. On this basis, the seismic performance of long-span bridges is tested by using the multi-point excitation motion equation, the response power spectrum and the structural dynamic reliability analysis based on the first transcendental failure criterion. Experimental results show that all the five seismic isolation schemes are feasible, and the seismic effect of the schemes 4 and 5 is the strongest. The maximum horizontal thrust of pier top is 6.27E+062, 0.50E+07 and 6.00E+06, 2.78E+07, respectively. The proposed method can be used to simulate the seismic response of long-span bridges.


2014 ◽  
Vol 687-691 ◽  
pp. 249-254
Author(s):  
Jin Yang Zheng ◽  
Yun He Chen ◽  
Jian Ping Wang

Based on the theoretical analysis on the coupled vehicle-bridge vibration, this paper simulates the action of the moving vehicle load on a bridge structure with a sprung mass model, and obtains the dynamic response of the simply-supported bridge structure under the moving vehicle load through computation by finite element method (FEM). Through checking computations of classic examples, this paper proves the applicability of this computation method.


Sign in / Sign up

Export Citation Format

Share Document