Sodium and potassium ion sensing properties of EIS and ISFET structures with fluorinated hafnium oxide sensing film

Author(s):  
Kuan-I Ho ◽  
Tseng-Fu Lu ◽  
Chung-Po Chang ◽  
Chao-Sung Lai ◽  
Chia-Ming Yang
Carbon ◽  
2021 ◽  
Vol 178 ◽  
pp. 233-242
Author(s):  
Shi Tao ◽  
Wei Xu ◽  
Jihui Zheng ◽  
Fanjun Kong ◽  
Peixin Cui ◽  
...  

Author(s):  
Yuhan Wu ◽  
Chenglin Zhang ◽  
Huaping Zhao ◽  
Yong Lei

In next-generation rechargeable batteries, sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have been considered as attractive alternatives to lithium-ion batteries due to their cost competitiveness. Anodes with complicated electrochemical mechanisms...


Author(s):  
Bochao Chen ◽  
Ming Liang ◽  
Qingzhao Wu ◽  
Shan Zhu ◽  
Naiqin Zhao ◽  
...  

AbstractThe development of sodium-ion (SIBs) and potassium-ion batteries (PIBs) has increased rapidly because of the abundant resources and cost-effectiveness of Na and K. Antimony (Sb) plays an important role in SIBs and PIBs because of its high theoretical capacity, proper working voltage, and low cost. However, Sb-based anodes have the drawbacks of large volume changes and weak charge transfer during the charge and discharge processes, thus leading to poor cycling and rapid capacity decay. To address such drawbacks, many strategies and a variety of Sb-based materials have been developed in recent years. This review systematically introduces the recent research progress of a variety of Sb-based anodes for SIBs and PIBs from the perspective of composition selection, preparation technologies, structural characteristics, and energy storage behaviors. Moreover, corresponding examples are presented to illustrate the advantages or disadvantages of these anodes. Finally, we summarize the challenges of the development of Sb-based materials for Na/K-ion batteries and propose potential research directions for their further development.


Sign in / Sign up

Export Citation Format

Share Document