An Efficient Ensemble Model for Forecasting Time Series Analysis of Crypto Currency Data Using Machine Learning

Author(s):  
C. Saravanakumar ◽  
S. Kanaga Lakshmi ◽  
M. Prakash ◽  
M. Vijayakumar ◽  
C. Arun
Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1342 ◽  
Author(s):  
Yong Fan ◽  
Litang Hu ◽  
Hongliang Wang ◽  
Xin Liu

Pumping tests are very important means for investigating aquifer properties; however, interpreting the data using common analytical solutions become invalid in complex aquifer systems. The paper aims to explore the potential of machine learning methods in retrieving the pumping tests information in a field site in the Democratic Republic of Congo. A newly planned mining site with a pumping test of three pumping wells and 28 observation wells over one month was chosen to analyze the significance of machine learning methods in the pumping test analysis. Widely used machine learning methods, including correlation, cluster, time-series analysis, artificial neural network (ANN), support vector machine (SVR), random forest (RF) method, and linear regression, are all used in this study. Correlation and cluster analyses among wells provide visual pictures of possible hydraulic connections. The pathway with the best permeability ranges from the depth of 250 m to 350 m. Time-series analysis perfectly captured changes of drawdowns within the three pumping wells. The RF method is found to have the higher accuracy and the lower sensitivity to model parameters than ANN and SVR methods. The coupling of the linear regressive model and analytical solutions is applied to estimate hydraulic conductivities. The results found that ML methods can significantly and effectively improve our understanding of pumping tests by revealing inherent information hidden in those tests.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sungyul Chang ◽  
Unseok Lee ◽  
Min Jeong Hong ◽  
Yeong Deuk Jo ◽  
Jin-Baek Kim

Yield prediction for crops is essential information for food security. A high-throughput phenotyping platform (HTPP) generates the data of the complete life cycle of a plant. However, the data are rarely used for yield prediction because of the lack of quality image analysis methods, yield data associated with HTPP, and the time-series analysis method for yield prediction. To overcome limitations, this study employed multiple deep learning (DL) networks to extract high-quality HTTP data, establish an association between HTTP data and the yield performance of crops, and select essential time intervals using machine learning (ML). The images of Arabidopsis were taken 12 times under environmentally controlled HTPP over 23 days after sowing (DAS). First, the features from images were extracted using DL network U-Net with SE-ResXt101 encoder and divided into early (15–21 DAS) and late (∼21–23 DAS) pre-flowering developmental stages using the physiological characteristics of the Arabidopsis plant. Second, the late pre-flowering stage at 23 DAS can be predicted using the ML algorithm XGBoost, based only on a portion of the early pre-flowering stage (17–21 DAS). This was confirmed using an additional biological experiment (P < 0.01). Finally, the projected area (PA) was estimated into fresh weight (FW), and the correlation coefficient between FW and predicted FW was calculated as 0.85. This was the first study that analyzed time-series data to predict the FW of related but different developmental stages and predict the PA. The results of this study were informative and enabled the understanding of the FW of Arabidopsis or yield of leafy plants and total biomass consumed in vertical farming. Moreover, this study highlighted the reduction of time-series data for examining interesting traits and future application of time-series analysis in various HTPPs.


Sign in / Sign up

Export Citation Format

Share Document