Evaluating the economic benefits of peak load shifting for building owners and grid operator

Author(s):  
Siong Lee Koh ◽  
Yun Seng Lim
Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4343
Author(s):  
Yunbo Yang ◽  
Rongling Li ◽  
Tao Huang

In recent years, many buildings have been fitted with smart meters, from which high-frequency energy data is available. However, extracting useful information efficiently has been imposed as a problem in utilizing these data. In this study, we analyzed district heating smart meter data from 61 buildings in Copenhagen, Denmark, focused on the peak load quantification in a building cluster and a case study on load shifting. The energy consumption data were clustered into three subsets concerning seasonal variation (winter, transition season, and summer), using the agglomerative hierarchical algorithm. The representative load profile obtained from clustering analysis were categorized by their profile features on the peak. The investigation of peak load shifting potentials was then conducted by quantifying peak load concerning their load profile types, which were indicated by the absolute peak power, the peak duration, and the sharpness of the peak. A numerical model was developed for a representative building, to determine peak shaving potentials. The model was calibrated and validated using the time-series measurements of two heating seasons. The heating load profiles of the buildings were classified into five types. The buildings with the hat shape peak type were in the majority during the winter and had the highest load shifting potential in the winter and transition season. The hat shape type’s peak load accounted for 10.7% of the total heating loads in winter, and the morning peak type accounted for 12.6% of total heating loads in the transition season. The case study simulation showed that the morning peak load was reduced by about 70%, by modulating the supply water temperature setpoints based on weather compensation curves. The methods and procedures used in this study can be applied in other cases, for the data analysis of a large number of buildings and the investigation of peak loads.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qingshan Xu ◽  
Yujun Liu ◽  
Maosheng Ding ◽  
Pingliang Zeng ◽  
Wei Pan

Electric vehicles (EVs) are developing remarkably fast these years which makes the technology of vehicle-to-grid (V2G) easier to implement. Peak load shifting (PLS) is an important part of V2G service. A model of EVs’ capacity in V2G service is proposed for the research on PLS in this paper. The capacity is valued in accordance with three types of situations. Based on the model, three different scenarios are suggested in order to evaluate the capacity with MATLAB. The evaluation results indicate that EVs can provide potential energy to participate in PLS. Then, the principle of PLS with EVs is researched through the analysis of the relationship between their power and capacity. The performance of EVs in PLS is also simulated. The comparison of two simulation results shows that EVs can fulfill the request of PLS without intensely lowering their capacity level.


Energy ◽  
2015 ◽  
Vol 92 ◽  
pp. 505-514 ◽  
Author(s):  
Reza Barzin ◽  
John J.J. Chen ◽  
Brent R. Young ◽  
Mohammed M. Farid

2013 ◽  
Vol 405-408 ◽  
pp. 2964-2968 ◽  
Author(s):  
Hu Lin ◽  
Xin Hong Li ◽  
Peng Sheng Cheng ◽  
Bu Gong Xu

For the purpose of grid peak load shifting, chilled water storage has been paid more and more attentions to integrated with air-conditioning system. In this paper, a new air conditioning system with directly chilled water storage is given. With peak-valley Price, cost for power consumption can be saved 15%-20% by coordinated operation between chilled water storage system and air conditioning system. By sensitivity analysis of system economic performance on ratio of peak price to valley price, it is revealed that with much higher ratio of peak price to valley price, not only system economic performance can seldom be improved, but also chilled water storage is restricted for engineering utilization. This paper supplies theory reference for engineering application of chilled water storage technology.


Energy ◽  
2019 ◽  
Vol 174 ◽  
pp. 478-487 ◽  
Author(s):  
Zilong Zhu ◽  
Yaping Chen ◽  
Jiafeng Wu ◽  
Shaobo Zhang ◽  
Shuxing Zheng

Sign in / Sign up

Export Citation Format

Share Document