On Peak Shaving and Load Shifting in Distribution Systems: Cost Saving vs Peak Load Reduction

Author(s):  
Yifei Guo ◽  
Zhaoyu Wang
Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 16
Author(s):  
Rafael S. Salles ◽  
A. C. Zambroni de Souza ◽  
Paulo F. Ribeiro

The advance of the distributed generation in Brazil makes it essential to investigate the applications and transformations that the use of these new arrangements may entail. The use of non-centralized generation technologies associated with energy storage is interesting for several sectors of the energy market, even if the market is in the process of maturing these technologies. In the context of the time-of-use rate, these changes have allowed the consumer to use strategies to save energy bill costs, especially when its moment of most considerable consumption coincides with that of the highest tariff. In this paper, a Battery Energy Storage System (BESS) is used to perform commercial peak load reduction in a microgrid in connected mode. The microgrid also has a Photovoltaic (PV) Generator Farm as Renewable Energy Sources (RES) to provide load consumption and also to assist BESS in the peak shaving operation. The modeling and simulation of the system are performed by MATLAB/Simulink. The analysis demonstrates that the peak load reduction produces the expected financial benefits under a Brazilian time-of-use rate known as White Rate, in addition to carrying out the operation in a manner consistent with the technique from an electrical point of view. The software Homer Grid validates the potential savings. Thus, the results showed that the use of energy storage associated with renewable generation under a peak shaving strategy allows greater freedom for the consumer in the face of costs with main grid purchases.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1726
Author(s):  
Norberto Martinez ◽  
Alejandra Tabares ◽  
John F. Franco

Battery systems bring technical and economic advantages to electrical distribution systems (EDSs), as they conveniently store the surplus of cheap renewable generation for use at a more convenient time and contribute to peak shaving. Due to the high cost of batteries, technical and economic studies are needed to evaluate their correct allocation within the EDS. To contribute to this analysis, this paper proposes a stochastic mathematical model for the optimal battery allocation (OBA), which can be guided by the optimization of two different economic metrics: net present value (NPV) and internal rate of return (IRR). The effects of the OBA in the EDS are evaluated considering the stochastic variation of photovoltaic generation and load. Tests with the 33-node IEEE test system indicate that OBA results in voltage profile improvement (~1% at peak time), peak reduction (31.17%), increased photovoltaic hosting capacity (18.8%), and cost reduction (3.06%). Furthermore, it was found that the IRR metric leads to a different solution compared to the traditional NPV optimization due to its inherent consideration of the relation between cash flow and investment. Thus, both NPV and IRR-based allocation alternatives can be used by the decision maker to improve economic and technical operation of the EDS.


Author(s):  
Yifan Wu ◽  
Wei Li ◽  
Deren Sheng ◽  
Jianhong Chen ◽  
Zitao Yu

Clean energy is now developing rapidly, especially in the United States, China, the Britain and the European Union. To ensure the stability of power production and consumption, and to give higher priority to clean energy, it is essential for large power plants to implement peak shaving operation, which means that even the 1000 MW steam turbines in large plants will undertake peak shaving tasks for a long period of time. However, with the peak load regulation, the steam turbines operating in low capacity may be much more likely to cause faults. In this paper, aiming at peak load shaving, a fault diagnosis method of steam turbine vibration has been presented. The major models, namely hierarchy-KNN model on the basis of improved principal component analysis (Improved PCA-HKNN) has been discussed in detail. Additionally, a new fault diagnosis method has been proposed. By applying the PCA improved by information entropy, the vibration and thermal original data are decomposed and classified into a finite number of characteristic parameters and factor matrices. For the peak shaving power plants, the peak load shaving state involving their methods of operation and results of vibration would be elaborated further. Combined with the data and the operation state, the HKNN model is established to carry out the fault diagnosis. Finally, the efficiency and reliability of the improved PCA-HKNN model is discussed. It’s indicated that compared with the traditional method, especially handling the large data, this model enhances the convergence speed and the anti-interference ability of the neural network, reduces the training time and diagnosis time by more than 50%, improving the reliability of the diagnosis from 76% to 97%.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4343
Author(s):  
Yunbo Yang ◽  
Rongling Li ◽  
Tao Huang

In recent years, many buildings have been fitted with smart meters, from which high-frequency energy data is available. However, extracting useful information efficiently has been imposed as a problem in utilizing these data. In this study, we analyzed district heating smart meter data from 61 buildings in Copenhagen, Denmark, focused on the peak load quantification in a building cluster and a case study on load shifting. The energy consumption data were clustered into three subsets concerning seasonal variation (winter, transition season, and summer), using the agglomerative hierarchical algorithm. The representative load profile obtained from clustering analysis were categorized by their profile features on the peak. The investigation of peak load shifting potentials was then conducted by quantifying peak load concerning their load profile types, which were indicated by the absolute peak power, the peak duration, and the sharpness of the peak. A numerical model was developed for a representative building, to determine peak shaving potentials. The model was calibrated and validated using the time-series measurements of two heating seasons. The heating load profiles of the buildings were classified into five types. The buildings with the hat shape peak type were in the majority during the winter and had the highest load shifting potential in the winter and transition season. The hat shape type’s peak load accounted for 10.7% of the total heating loads in winter, and the morning peak type accounted for 12.6% of total heating loads in the transition season. The case study simulation showed that the morning peak load was reduced by about 70%, by modulating the supply water temperature setpoints based on weather compensation curves. The methods and procedures used in this study can be applied in other cases, for the data analysis of a large number of buildings and the investigation of peak loads.


2019 ◽  
Vol 13 (3) ◽  
pp. 3274-3282 ◽  
Author(s):  
Hanane Dagdougui ◽  
Ahmed Ouammi ◽  
Louis A. Dessaint

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qingshan Xu ◽  
Yujun Liu ◽  
Maosheng Ding ◽  
Pingliang Zeng ◽  
Wei Pan

Electric vehicles (EVs) are developing remarkably fast these years which makes the technology of vehicle-to-grid (V2G) easier to implement. Peak load shifting (PLS) is an important part of V2G service. A model of EVs’ capacity in V2G service is proposed for the research on PLS in this paper. The capacity is valued in accordance with three types of situations. Based on the model, three different scenarios are suggested in order to evaluate the capacity with MATLAB. The evaluation results indicate that EVs can provide potential energy to participate in PLS. Then, the principle of PLS with EVs is researched through the analysis of the relationship between their power and capacity. The performance of EVs in PLS is also simulated. The comparison of two simulation results shows that EVs can fulfill the request of PLS without intensely lowering their capacity level.


2013 ◽  
Vol 291-294 ◽  
pp. 2022-2027
Author(s):  
Hui Shi Liang ◽  
Hai Tao Liu ◽  
Jian Su

This paper presents a methodology for substation optimal planning considering DG for peak shaving. Utility can take effective demand-side management (DSM) to encourage customer-owned DG to participate in peak load shaving, and it can also construct utility DG to meet the peak load demand. In this paper, the impact of DG on peak load shaving is analyzed, and DG is taken as a complement to T&D system to meet load demand, which is considered in the substation planning. Substations sizing and location and new-built utility DG capacity is optimized using Particle Swarm Optimization (PSO), in which supply area of each substation is obtained by Voronoi diagram method. Case study shows that planning result considering DG for peak shaving can defer T&D system expansion so that considerable investment can be saved. Especially for those areas with high cost of T&D system construction, constructing DG to meet peak load demand would be a more economic way.


Sign in / Sign up

Export Citation Format

Share Document