A Real-time Detection Algorithm for Unmanned Aerial Vehicle Target in Infrared Search System

Author(s):  
Wang Weihua ◽  
Wang Peizao ◽  
Niu Zhaodong
2020 ◽  
Vol 12 (1) ◽  
pp. 182 ◽  
Author(s):  
Lingxuan Meng ◽  
Zhixing Peng ◽  
Ji Zhou ◽  
Jirong Zhang ◽  
Zhenyu Lu ◽  
...  

Unmanned aerial vehicle (UAV) remote sensing and deep learning provide a practical approach to object detection. However, most of the current approaches for processing UAV remote-sensing data cannot carry out object detection in real time for emergencies, such as firefighting. This study proposes a new approach for integrating UAV remote sensing and deep learning for the real-time detection of ground objects. Excavators, which usually threaten pipeline safety, are selected as the target object. A widely used deep-learning algorithm, namely You Only Look Once V3, is first used to train the excavator detection model on a workstation and then deployed on an embedded board that is carried by a UAV. The recall rate of the trained excavator detection model is 99.4%, demonstrating that the trained model has a very high accuracy. Then, the UAV for an excavator detection system (UAV-ED) is further constructed for operational application. UAV-ED is composed of a UAV Control Module, a UAV Module, and a Warning Module. A UAV experiment with different scenarios was conducted to evaluate the performance of the UAV-ED. The whole process from the UAV observation of an excavator to the Warning Module (350 km away from the testing area) receiving the detection results only lasted about 1.15 s. Thus, the UAV-ED system has good performance and would benefit the management of pipeline safety.


2021 ◽  
Vol 13 (21) ◽  
pp. 4377
Author(s):  
Long Sun ◽  
Jie Chen ◽  
Dazheng Feng ◽  
Mengdao Xing

Unmanned aerial vehicle (UAV) is one of the main means of information warfare, such as in battlefield cruises, reconnaissance, and military strikes. Rapid detection and accurate recognition of key targets in UAV images are the basis of subsequent military tasks. The UAV image has characteristics of high resolution and small target size, and in practical application, the detection speed is often required to be fast. Existing algorithms are not able to achieve an effective trade-off between detection accuracy and speed. Therefore, this paper proposes a parallel ensemble deep learning framework for unmanned aerial vehicle video multi-target detection, which is a global and local joint detection strategy. It combines a deep learning target detection algorithm with template matching to make full use of image information. It also integrates multi-process and multi-threading mechanisms to speed up processing. Experiments show that the system has high detection accuracy for targets with focal lengths varying from one to ten times. At the same time, the real-time and stable display of detection results is realized by aiming at the moving UAV video image.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Jia Wei Tang ◽  
Nasir Shaikh-Husin ◽  
Usman Ullah Sheikh ◽  
M. N. Marsono

Moving target detection is the most common task for Unmanned Aerial Vehicle (UAV) to find and track object of interest from a bird’s eye view in mobile aerial surveillance for civilian applications such as search and rescue operation. The complex detection algorithm can be implemented in a real-time embedded system using Field Programmable Gate Array (FPGA). This paper presents the development of real-time moving target detection System-on-Chip (SoC) using FPGA for deployment on a UAV. The detection algorithm utilizes area-based image registration technique which includes motion estimation and object segmentation processes. The moving target detection system has been prototyped on a low-cost Terasic DE2-115 board mounted with TRDB-D5M camera. The system consists of Nios II processor and stream-oriented dedicated hardware accelerators running at 100 MHz clock rate, achieving 30-frame per second processing speed for 640 × 480 pixels’ resolution greyscale videos.


2020 ◽  
Vol 5 (1) ◽  
pp. 71-84
Author(s):  
Adhyta Harfan ◽  
Dipo Yudhatama ◽  
Imam Bachrodin

Metode Fotogrametri telah banyak digunakan dalam survei dan pemetaan. Seiring dengan kemajuan ilmu pengetahuan dan teknologi, metode fotogrametri saat ini berbasiskan pesawat tanpa awak atau yang lebih dikenal dengan UAV (Unmanned Aerial Vehicle). Kelebihan metode fotogrametri berbasiskan UAV untuk pengukuran garis pantai adalah memiliki resolusi spasial yang sangat tinggi dan dapat menjagkau daerah-daerah yang sulit dan berbahaya. Di samping itu juga dapat memberikan data foto udara terkini dengan sekala detail. Dalam penelitian ini membandingkan ketelitian horisontal antara hasil pengukuran garis pantai menggunakan metode fotogrametri berbasiskan UAV secara rektifikasi dengan GCP (Ground Control Point) maupun secara PPK (Post Processed Kinematic) dengan pengukuran garis pantai metode GNSS RTK (Real Time Kinematic). Hasil perhitungan ketelitian horisontal mengacu pada standar publikasi IHO S-44 tentang pengukuran garis pantai. Pemotretan dilakukan dengan ketinggian terbang 180 m, dengan tampalan depan dan samping 80%. Hasil perhitungan ketelitian horisontal foto udara terektifikasi 5 GCP, foto udara PPK dan foto udara PPK terektifikasi 1 GCP terhadap pengukuran garis pantai dengan metode GNSS RTK diperoleh nilai standar deviasi (σ) dan 95% selang kepercayaan (CI95%) masing-masing sebagai berikut: σ5gcp=10,989 cm dengan CI95% 16.8 cm < μ < 21.2 cm , σppk=26,066 cm dengan CI95% 26.5 cm < μ < 37 cm dan σppk1gcp=10,378 cm dengan CI95% 15.6 cm < μ < 19.8 cm. Kemudian terdapat 10 objek tematik berdasarkan Peta Laut Nomor 1 yang dapat diinterpretasi pada hasil orthomosaic foto udara.


2019 ◽  
Vol 14 (1) ◽  
pp. 27-37
Author(s):  
Matúš Tkáč ◽  
Peter Mésároš

Abstract An unmanned aerial vehicle (UAVs), also known as drone technology, is used for different types of application in the civil engineering. Drones as a tools that increase communication between construction participants, improves site safety, uses topographic measurements of large areas, with using principles of aerial photogrammetry is possible to create buildings aerial surveying, bridges, roads, highways, saves project time and costs, etc. The use of UAVs in the civil engineering can brings many benefits; creating real-time aerial images from the building objects, overviews reveal assets and challenges, as well as the broad lay of the land, operators can share the imaging with personnel on site, in headquarters and with sub-contractors, planners can meet virtually to discuss project timing, equipment needs and challenges presented by the terrain. The aim of this contribution is to create a general overview of the use of UAVs in the civil engineering. The contribution also contains types of UAVs used for construction purposes, their advantages and also disadvantages.


Sign in / Sign up

Export Citation Format

Share Document