scholarly journals Large Aeroelastic Model of a Floating Offshore Wind Turbine: Mechanical and Mechatronics Design

Author(s):  
Sara Muggiasca ◽  
Alessandro Fontanella ◽  
Federico Taruffi ◽  
Hermes Giberti ◽  
Alan Facchinetti ◽  
...  

Abstract This paper deals with the mechatronic design of a large-scale wind turbine model (outdoor scaled prototype) based on the DTU 10MW. This is going to be integrated in the model of a multi-purpose floating structure to be deployed at the Natural Ocean Engineering Laboratory (NOEL) in Reggio Calabria (Italy). The floating wind turbine model is the downscaling of the full-scale structure designed within the EU H2020 Blue Growth Farm project. The structural design of the scaled wind turbine is presented, starting from the aeroelastic and aerodynamic design carried out in a previous work.

Author(s):  
Alessandro Fontanella ◽  
Federico Taruffi ◽  
Sara Muggiasca ◽  
Marco Belloli

Abstract This paper discusses the methodology introduced by the authors to design a large-scale wind turbine model starting from the DTU 10MW RWT. The wind turbine will be coupled with the model of a multi-purpose floating structure, designed within the EU H2020 Blue Growth Farm project, and it will be deployed at the Natural Ocean Engineering Laboratory (NOEL). In this paper the different strategies used to design the wind turbine model rotor, tower and nacelle are discussed, focusing on how it has been possible to reproduce the full-scale system aero-elastic response while ensuring the same functionalities of a real wind turbine.


Author(s):  
Federico Taruffi ◽  
Simone Di Carlo ◽  
Sara Muggiasca ◽  
Alessandro Fontanella

Abstract This paper deals with the numerical design of a floating offshore wind turbine outdoor large-scale prototype based on the DTU 10MW. The objective of this work is to develop a numerical simulation environment for the design of an outdoor scaled prototype. The numerical model is realized coupling the preliminary designed Blue Growth Farm large-scale turbine model with a traditional floater, the OC3 spar buoy. The numerical model is used to evaluate the loads associated with the wind turbine when combined to a floating foundation, with the focus on the coupling between the dynamics of the control system and the one of the floating platform. In addition to this, also the consistency of loads on crucial turbine components is an interesting test bench for the evaluation of the dynamical effects and drives the final design of the physical model.


Author(s):  
Chinsu Mereena Joy ◽  
Anitha Joseph ◽  
Lalu Mangal

Demand for renewable energy sources is rapidly increasing since they are able to replace depleting fossil fuels and their capacity to act as a carbon neutral energy source. A substantial amount of such clean, renewable and reliable energy potential exists in offshore winds. The major engineering challenge in establishing an offshore wind energy facility is the design of a reliable and financially viable offshore support for the wind turbine tower. An economically feasible support for an offshore wind turbine is a compliant platform since it moves with wave forces and offer less resistance to them. Amongst the several compliant type offshore structures, articulated type is an innovative one. It is flexibly linked to the seafloor and can move along with the waves and restoring is achieved by large buoyancy force. This study focuses on the experimental investigations on the dynamic response of a three-legged articulated structure supporting a 5MW wind turbine. The experimental investigations are done on a 1: 60 scaled model in a 4m wide wave flume at the Department of Ocean Engineering, Indian Institute of Technology, Madras. The tests were conducted for regular waves of various wave periods and wave heights and for various orientations of the platform. The dynamic responses are presented in the form of Response Amplitude Operators (RAO). The study results revealed that the proposed articulated structure is technically feasible in supporting an offshore wind turbine because the natural frequencies are away from ocean wave frequencies and the RAOs obtained are relatively small.


Author(s):  
Baptiste Elie ◽  
Guillaume Oger ◽  
David Le Touzé

Abstract The present study addresses the first steps of development and validation of a coupled CFD-BE (Blade Element) simulation tool dedicated to offshore wind turbine farm modelling. The CFD part is performed using a weakly-compressible solver (WCCH). The turbine is taken into account using FAST (from NREL) and its effects are imposed into the fluid domain through an actuator line model. The first part of this paper is dedicated to the presentation of the WCCH solver and its coupling with the aero-elastic modules from FAST. In a second part, for validation purposes, comparisons between FAST and the WCCH-FAST coupling are presented and discussed. Finally, a discussion on the performances, advantages and limitations of the formulation proposed is provided.


Author(s):  
Yougang Tang ◽  
Yan Li ◽  
Peng Xie ◽  
Xiaoqi Qu ◽  
Bin Wang

Abstract Simulations are conducted in time domain to investigate the dynamic response of a SPAR-type floating offshore wind turbine under the scenarios with freak wave. Towards this end, a coupled aero-hydro numerical model is developed. The methodology includes a blade-element-momentum model for aerodynamics, a nonlinear model for hydrodynamics, a nonlinear restoring model of SPAR buoy, and a nonlinear algorithm for mooring cables. The OC3 Hywind SPAR-type FOWT is chosen as an example to study the dynamic response under the freak conditions, while the time series of freak wave is generated by the Random Frequency Components Selection Phase Modulation Method. The motions of platform, the tensions in the mooring lines and the power generation performance are documented in different cases. According to the simulations, it shows that the power coefficient of wind turbine decreased rapidly at the moment when freak wave acted on the floating structure.


Author(s):  
Daewoong Son ◽  
Pauline Louazel ◽  
Bingbin Yu

Abstract Wind forces acting on an offshore wind turbine are transferred to the bottom of the tower and consequently to the floating structure. Thus, drag forces acting on each component of the wind turbine such as the blades, the nacelle, and the tower must be accounted for properly in order to evaluate the performance of the supporting platform. In the aero-elastic wind turbine simulation tool FAST v.7, the nacelle drag component, however, has not been implemented, which means that only the drag forces on the tower and on the blades are represented. In this work, the front and side nacelle drag forces are modelled in FAST v.7 via different drag contributions. This paper will examine the behavior of a floating offshore semisubmersible platform, the WindFloat, for different Rotor-Nacelle-Assembly (RNA) yaw-misalignments with emphasis on the nacelle drag component.


Author(s):  
Charise Cutajar ◽  
Tonio Sant ◽  
Robert N. Farrugia ◽  
Daniel Buhagiar

Abstract Offshore wind technology is at the forefront of exploiting renewable energy at sea. The latest innovations in the field comprise floating wind turbines deployed in deep waters that are capable of intercepting the stronger, less turbulent winds farther away from the landmass. Despite being able to augment the power harnessed, wind resources remain intermittent in nature, and so unable to satisfy the energy demand at all times. Energy storage systems (ESS) are therefore being considered a key component to smoothen out the supply-demand mismatch when wind penetration into electricity grids increases. Yet, multiple issues pertaining to the integration of ESSs on large-scale projects arise, including economic, environmental and safety considerations. This paper presents a novel concept for integrating a hydro-pneumatic energy storage (HPES) system within a spar-type floating offshore wind turbine (FOWT) platform. It aims to assess the technical feasibility of integrating the storage unit within the floater. A preliminary investigation on the influence of integrated storage on the static stability and hydrostatic response of a conventional ballast-stabilised FOWT is conducted, followed by numerical simulations for the dynamic response using ANSYS® AQWA™. Based on the results presented, several conclusions are drawn on the implications of integrating energy storage with floating wind turbine structures. Finally, a preliminary assessment of the thermal efficiency of the storage system based on this specific embodiment is also presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document