A Wireless Sensor Network for Aquaculture Using Raspberry Pi, Arduino and Xbee

Author(s):  
Khanh Nguyen Tuan
2019 ◽  
Vol 11 (1) ◽  
pp. 39-42
Author(s):  
Era Madona ◽  
Muhammad Irmansyah ◽  
Yulastri Yulastri ◽  
Anggara Nasution

Flash flood (debris flow) or people of Padang called  “galodo”  is one disaster that could threaten any time, especially at plateau with high rainfall. This study is an attempt to design prototype which is implemented to detect the content of the existing material in river flows due to “Galodo”. This research design and implement the wireless sensor network to transmit information or sensor output data and data receivers on prototype of “Galodo” material detection with laboratory testing scale. This system consist of a transmitter device that includes a sound sensor, Arduino Uno, and XBee S2, and a receiver that includes the XBee S2 and raspberry Pi as a database server. Data in data server are expected can distinguish the water in” Galodo” bring small material such as sand or larger or just contain of water. The information obtained display in graphic on the website to system data monitoring including time delay for sending data from transmitter to receiver.


2020 ◽  
Vol 10 (19) ◽  
pp. 6992
Author(s):  
Giva Andriana Mutiara ◽  
Nanna Suryana Herman ◽  
Othman Mohd

Nowadays, the need for wireless sensing applications is increasing. Along with the increased illegal cutting of logs in the forest, however, it requires the integration application to tackle the illegal logging and forest preservation. The wireless sensor network is a suitable network architecture for remotely monitoring or tracking applications in the environment. This paper proposed an integrated system that can identify and track the position of a moving cutting log. An Arduino Uno, Raspberry Pi 3 B+, sound sensor, accelerometer sensor, LoRa GPS HAT Shield, and Outdoor LoRa Gateway OLG01 performed the hardware monitoring and tracking of the proposed system. The network of STAR topology configuration between master and slaves is represented by the LoRa Network embedded with the sensors, as an architecture of the wireless sensor network. The system was examined the performance of the network and the tracking process. The result determined that the LoRa can detect and identify the occurrence of the illegal cutting of logs in real-time. Meanwhile, in terms of the tracking performance, a duration of 5–46 s was required to track the new position of the moving cutting log.


Workshop contamination can lead to changes in the characteristics of the air. Welding process for example inside the workshop will generate different pollutants just like fume and gases. These gases may threat the environment. Also the direct exposure of these gases by people inside the workshop may be considered as a risk on their health. For all reasons mentioned above air pollution monitoring system is important issue to decrease the risk of low level of health. This paper introduces the implementation of wireless sensor network to monitor a workshop air pollution. The proposed system prototype contains a set of gas sensors (CO, H2, NH3, Butane, Propane, Ethanol and NO2) which are deployed on stack and infrastructure of Wireless sensor Network. These sensors are calibrated using appropriate calibration technologies. They are controlled by ARDUINO based microcontroller. Also there is the main server which Installed on raspberry pi 3 and contains the main database of the system which supports real time management strategies by using the web interface to monitor the air pollution in form of numbers and charts. Sensors which controlled by ARDUINO platform are connected to the server using the wireless technology (Wi-Fi) and the communication is done by using Message Queuing Telemetry Transport protocol (MQTT).When the level of Carbon Monoxide gas is above the threshold the system will send an alert email to the department of the civil defense. The system is checked and tested in the training workshops of University of Technology to measure the levels of harmful gases which may harm the people in the workshops.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2739 ◽  
Author(s):  
Muhammad Usman Younus ◽  
Saif ul Islam ◽  
Sung Won Kim

A wireless sensor network (WSN) has achieved significant importance in tracking different physical or environmental conditions using wireless sensor nodes. Such types of networks are used in various applications including smart cities, smart building, military target tracking and surveillance, natural disaster relief, and smart homes. However, the limited power capacity of sensor nodes is considered a major issue that hampers the performance of a WSN. A plethora of research has been conducted to reduce the energy consumption of sensor nodes in traditional WSN, however the limited functional capability of such networks is the main constraint in designing sophisticated and dynamic solutions. Given this, software defined networking (SDN) has revolutionized traditional networks by providing a programmable and flexible framework. Therefore, SDN concepts can be utilized in designing energy-efficient WSN solutions. In this paper, we exploit SDN capabilities to conserve energy consumption in a traditional WSN. To achieve this, an energy-aware multihop routing protocol (named EASDN) is proposed for software defined wireless sensor network (SDWSN). The proposed protocol is evaluated in a real environment. For this purpose, a test bed is developed using Raspberry Pi. The experimental results show that the proposed algorithm exhibits promising results in terms of network lifetime, average energy consumption, the packet delivery ratio, and average delay in comparison to an existing energy efficient routing protocol for SDWSN and a traditional source routing algorithm.


Author(s):  
Kristoffer O. Flores ◽  
Isidro M. Butaslac ◽  
Jon Enric M. Gonzales ◽  
Samuel Matthew G. Dumlao ◽  
Rosula S.J. Reyes

Sign in / Sign up

Export Citation Format

Share Document