Performance analysis of solar photovoltaic module for multiple varying factors in MATLAB/Simulink

Author(s):  
S.S. Inamdar ◽  
A.P. Vaidya
2014 ◽  
Vol 550 ◽  
pp. 137-143 ◽  
Author(s):  
S. Narendiran ◽  
Sarat Kumar Sahoo

The paper discuss about the modelling and electrical characteristics of photovoltaic cell and its array type of construction in matlab-simulink environment at different insolation levels. The photovoltaic module is modelled using the diode electrical characteristic equation. The photovoltaic cell is analysed by voltage input and current input modules, The voltage and current input photovoltaic modules are simulated with different insolation values by varying the construction of PV modules. The results conclude that the current input PV module is well suited for applications were it shares same current when connected in series and voltage input PV module, where it shares same voltage when connected in parallel.


Author(s):  
Siti Amely Jumaat ◽  
Adhwa Amsyar Syazwan Ab Majid ◽  
Mohd Noor Abdullah ◽  
Nur Hanis Radzi ◽  
Rohaiza Hamdan ◽  
...  

This project aims to model a solar Photovoltaic (PV) Module using MATLAB Simulink. In Renewable Energy (RE) field, many studies have been carried out to determine the level of efficiency and performance of a specific PV module. Therefore, this research will carry out the modeling of the 120W Monocrystalline Photovoltaic Module by Su-Kam Solar using MATLAB Simulink to determine the efficiency and performance. The input parameters that consists of Solar Irradiance (G) and Temperature (T) data will be collected at location 1.8635° N, 103.1089° E which is in Parit Raja, Batu Pahat, Johor. The results are shown in I-V curve and P-V curve and compared with the theory of I-V and P-V curve. Other than that, the PV module have different performance in different value of irradiance and temperature. Lastly, the PV Module is work efficiently and full performance at Standard Test Conditon (STC).


2021 ◽  
pp. 301-301
Author(s):  
Lalith Nadimuthu ◽  
Divya Selvaraj ◽  
Kirubakaran Victor

The present study investigates the performance of solar photovoltaic integrated thermoelectric cooler (TEC) using MATLAB Simulink. The enhancement of efficiency has been achieved using an effective heat removal mechanism from the hot side heat sink. Since the hot side temperature is a crucial parameter. The intrinsic material properties like Seebeck coefficient (?), Thermal Conductance (K) and Electrical resistance (R) of the thermoelectric module are carefully estimated using analytical method and reported. The MATLAB Simulink Peltier module is developed based on the estimated intrinsic properties. The effect of system Voltage (V) and Current (A) on the thermal parameters like cooling capacity (QC) and Coefficient of performance (COP) has been investigated. The simulation study is validated by conducting a series of experimental analysis. The experimental model is equipped with a 100 Wp polycrystalline solar photovoltaic module to integrate and power the 12V/5 A of the 60-Watt thermoelectric cooler. Moreover, the results reveal that there is a significant effect of ambient and hot side temperature on the thermoelectric cooler performance. The fin-type conductive mode of heat transfer mechanism is adopted along with the convective forced air-cooling system to achieve effective heat removal from the hot side. The infrared thermographic investigation is carried out for ascertaining effective heat removal.


This article is a simulation, designing and modeling of a hybrid power generation system based on nonconventional (renewable) solar photovoltaic and wind turbine energy reliable sources. The primary premeditated system is the solar electric generator, consisting of six models and series connected to each other, based on predicted-P&O and connected to a MPPT controller and DC/AC converter, system is associated with PMSG (permanent magnet synchronous generator). The main purpose of this article is to interconnect systems to generate maximum power for single auxiliary phase loading, as well as the solar PV generator and systems of wind turbines for simulation with execution use of Simulink / MATLAB. The results of this simulation indicate that the hybrid power system is planned for stability, reliability, efficiency and model. Solar PV generator and wind turbine from the use of a renewable energy source (for maximum voltage generation).The solar photovoltaic module executable in MATLAB / Simulink captures five parameters, series parameters and shunt resistance is an inverse photovoltaic saturation flow and an ideal factor


Sign in / Sign up

Export Citation Format

Share Document