Area-efficient and high-throughput hardware implementations of TAV-128 hash function for resource-constrained IoT devices

Author(s):  
Ramla Ijaz ◽  
Muhammad Adeel Pasha
Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shafi Ullah ◽  
Raja Zahilah

AbstractRobust encryption techniques require heavy computational capability and consume large amount of memory which are unaffordable for resource constrained IoT devices and Cyber-Physical Systems with an inclusion of general-purpose data manipulation tasks. Many encryption techniques have been introduced to address the inability of such devices, lacking in robust security provision at low cost. This article presents an encryption technique, implemented on a resource constrained IoT device (AVR ATmega2560) through utilizing fast execution and less memory consumption properties of curve25519 in a novel and efficient lightweight hash function. The hash function utilizes GMP library for multi-precision arithmetic calculations and pre-calculated curve points to devise a good cipher block using ECDH based key exchange protocols and large random prime number generator function.


Author(s):  
Prateek Chhikara ◽  
Rajkumar Tekchandani ◽  
Neeraj Kumar ◽  
Mohammad S. Obaidat

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1598
Author(s):  
Sigurd Frej Joel Jørgensen Ankergård ◽  
Edlira Dushku ◽  
Nicola Dragoni

The Internet of Things (IoT) ecosystem comprises billions of heterogeneous Internet-connected devices which are revolutionizing many domains, such as healthcare, transportation, smart cities, to mention only a few. Along with the unprecedented new opportunities, the IoT revolution is creating an enormous attack surface for potential sophisticated cyber attacks. In this context, Remote Attestation (RA) has gained wide interest as an important security technique to remotely detect adversarial presence and assure the legitimate state of an IoT device. While many RA approaches proposed in the literature make different assumptions regarding the architecture of IoT devices and adversary capabilities, most typical RA schemes rely on minimal Root of Trust by leveraging hardware that guarantees code and memory isolation. However, the presence of a specialized hardware is not always a realistic assumption, for instance, in the context of legacy IoT devices and resource-constrained IoT devices. In this paper, we survey and analyze existing software-based RA schemes (i.e., RA schemes not relying on specialized hardware components) through the lens of IoT. In particular, we provide a comprehensive overview of their design characteristics and security capabilities, analyzing their advantages and disadvantages. Finally, we discuss the opportunities that these RA schemes bring in attesting legacy and resource-constrained IoT devices, along with open research issues.


2014 ◽  
Vol 22 (11) ◽  
pp. 2268-2277 ◽  
Author(s):  
Yuan-Ho Chen ◽  
Ruei-Yuan Jou ◽  
Tsin-Yuan Chang ◽  
Chih-Wen Lu

2017 ◽  
Vol 37 (7) ◽  
pp. 2934-2957 ◽  
Author(s):  
Prashant Kumar ◽  
Prabhat Chandra Shrivastava ◽  
Manish Tiwari ◽  
Amit Dhawan

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6131
Author(s):  
Mamun Abu-Tair ◽  
Soufiene Djahel ◽  
Philip Perry ◽  
Bryan Scotney ◽  
Unsub Zia ◽  
...  

Internet of Things (IoT) technology is increasingly pervasive in all aspects of our life and its usage is anticipated to significantly increase in future Smart Cities to support their myriad of revolutionary applications. This paper introduces a new architecture that can support several IoT-enabled smart home use cases, with a specified level of security and privacy preservation. The security threats that may target such an architecture are highlighted along with the cryptographic algorithms that can prevent them. An experimental study is performed to provide more insights about the suitability of several lightweight cryptographic algorithms for use in securing the constrained IoT devices used in the proposed architecture. The obtained results showed that many modern lightweight symmetric cryptography algorithms, as CLEFIA and TRIVIUM, are optimized for hardware implementations and can consume up to 10 times more energy than the legacy techniques when they are implemented in software. Moreover, the experiments results highlight that CLEFIA significantly outperforms TRIVIUM under all of the investigated test cases, and the latter performs 100 times worse than the legacy cryptographic algorithms tested.


Sign in / Sign up

Export Citation Format

Share Document