Cutting forces, tool life, and size effect of passivated cutters in milling of Inconel 718

Author(s):  
Junxue Ren ◽  
Yingying Xu ◽  
Yongshou Liang ◽  
Changfeng Yao ◽  
Guangpeng Shao
1997 ◽  
Vol 119 (1) ◽  
pp. 125-129 ◽  
Author(s):  
J. W. Novak ◽  
Y. C. Shin ◽  
F. P. Incropera

An experimental study has been performed to assess the feasibility of using a hybrid machining system to improve the machinability of Inconel 718. An assembled plasma enhanced machining (PEM) system is described, and experimental results obtained from both conventional and plasma enhanced machining of Inconel 718 are compared. Several advantages of PEM over conventional machining are demonstrated, including improvement of surface roughness, lower cutting forces and extended tool life.


Author(s):  
I A Choudhury ◽  
M A El-Baradie

A series of machining experiments of Inconel 718 has been carried out using coated and uncoated carbides. The paper describes the effects of cutting variables (speed, feed and depth of cut) on cutting forces and tool life. Carbide tools in the form of 80° rhomboid shaped inserts without any chip breaker have been used at different cutting conditions. The machining parameters have been optimized by measuring cutting forces. Flank wear was considered as the criterion for tool life. A comparison between the uncoated and coated tools has been made using the Taylor's tool life exponents of speed, feed and depth of cut. The tool life of coated tools was not found to be better than that of the uncoated tools.


2013 ◽  
Vol 554-557 ◽  
pp. 1961-1966 ◽  
Author(s):  
Yessine Ayed ◽  
Guenael Germain ◽  
Amine Ammar ◽  
Benoit Furet

Titanium alloys are known for their excellent mechanical properties, especially at high temperature. But this specificity of titanium alloys can cause high cutting forces as well as a significant release of heat that may entail a rapid wear of the cutting tool. To cope with these problems, research has been taken in several directions. One of these is the development of assistances for machining. In this study, we investigate the high pressure coolant assisted machining of titanium alloy Ti17. High pressure coolant consists of projecting a jet of water between the rake face of the tool and the chip. The efficiency of the process depends on the choice of the operating parameters of machining and the parameters of the water jet such as its pressure and its diameter. The use of this type of assistance improves chip breaking and increases tool life. Indeed, the machining of titanium alloys is generally accompanied by rapid wear of cutting tools, especially in rough machining. The work done focuses on the wear of uncoated tungsten carbide tools during machining of Ti17. Rough and finish machining in conventional and in high pressure coolant assistance conditions were tested. Different techniques were used in order to explain the mechanisms of wear. These tests are accompanied by measurement of cutting forces, surface roughness and tool wear. The Energy-dispersive X-ray spectroscopy (EDS) analysis technique made it possible to draw the distribution maps of alloying elements on the tool rake face. An area of material deposition on the rake face, characterized by a high concentration of titanium, was noticed. The width of this area and the concentration of titanium decreases in proportion with the increasing pressure of the coolant. The study showed that the wear mechanisms with and without high pressure coolant assistance are different. In fact, in the condition of conventional machining, temperature in the cutting zone becomes very high and, with lack of lubrication, the cutting edge deforms plastically and eventually collapses quickly. By contrast, in high pressure coolant assisted machining, this problem disappears and flank wear (VB) is stabilized at high pressure. The sudden rupture of the cutting edge observed under these conditions is due to the propagation of a notch and to the crater wear that appears at high pressure. Moreover, in rough condition, high pressure assistance made it possible to increase tool life by up to 400%.


2017 ◽  
Vol 91 (5-8) ◽  
pp. 2907-2917 ◽  
Author(s):  
Chenwei Dai ◽  
Wenfeng Ding ◽  
Jiuhua Xu ◽  
Chen Ding ◽  
Guoqin Huang

2017 ◽  
Vol 13 (1) ◽  
pp. 1 ◽  
Author(s):  
Xiaohong Lu ◽  
Zhenyuan Jia ◽  
Hua Wang ◽  
Xiaochen Hu ◽  
Guangjun Li ◽  
...  

Wear ◽  
2018 ◽  
Vol 414-415 ◽  
pp. 79-88 ◽  
Author(s):  
Maryam Aramesh ◽  
Saharnaz Montazeri ◽  
Stephen C. Veldhuis

Sign in / Sign up

Export Citation Format

Share Document