Characterization of integrated thin film Pt heater and temperature sensors on Si platform

Author(s):  
Drago Resnik ◽  
D. Vrtacnik ◽  
U. Aljancic ◽  
M. Mozek ◽  
B. Pecar ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Satoshi Konishi ◽  
Akiya Hirata

Abstract The integration of a flexible temperature sensor with a soft microactuator (a pneumatic balloon actuator) for a functional microfinger is presented herein. A sensor integrated with a microactuator can actively approach a target for contact detection when a distance exists from the target or when the target moves. This paper presents a microfinger with temperature sensing functionality. Moreover, thermocouples, which detect temperature based on the Seebeck effect, are designed for use as flexible temperature sensors. Thermocouples are formed by a pair of dissimilar metals or alloys, such as copper and constantan. Thin-film metals or alloys are patterned and integrated in the microfinger. Two typical thermocouples (K-type and T-type) are designed in this study. A 2.0 mm × 2.0 mm sensing area is designed on the microfinger (3.0 mm × 12 mm × 400 μm). Characterization indicates that the output voltage of the sensor is proportional to temperature, as designed. It is important to guarantee the performance of the sensor against actuation effects. Therefore, in addition to the fundamental characterization of the temperature sensors, the effect of bending deformation on the characteristics of the temperature sensors is examined with a repeated bending test consisting of 1000 cycles.


2013 ◽  
Vol 193 ◽  
pp. 170-181 ◽  
Author(s):  
J. Martinez-Quijada ◽  
S. Caverhill-Godkewitsch ◽  
M. Reynolds ◽  
L. Gutierrez-Rivera ◽  
R.W. Johnstone ◽  
...  

Author(s):  
Mourad Elsobky ◽  
Alessandro Ottaviani ◽  
Mohammed Alomari ◽  
Zili Yu ◽  
Thomas Deuble ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 177-184
Author(s):  
Frank Gerlach ◽  
Kristina Ahlborn ◽  
Winfried Vonau

All-solid-state sensors have several advantages compared to conventional ones. These include, e.g., miniaturization, planar design, location independence and an uncom­plicated realization of sensors for high pressure and high temperature. Therefore, a number of physical sensors, such as temperature sensors, pressure sensors, rotation angle sensors and force sensors are available in thin-film techniques. The presented paper shows the advantages to combination of thin and thick film tech­niques to manufacture electrochemical sensors, especially using pulsed laser ablation to create amorphous layers of glass. Furthermore, it investigates the range of possibilities for characterization of bulk and surface properties with electrochemical methods and specialized techniques with thermally stimulated currents (TSC). 


Author(s):  
E. L. Hall ◽  
A. Mogro-Campero ◽  
L. G. Turner ◽  
N. Lewis

There is great interest in the growth of thin superconducting films of YBa2Cu3Ox on silicon, since this is a necessary first step in the use of this superconductor in a variety of possible electronic applications including interconnects and hybrid semiconductor/superconductor devices. However, initial experiments in this area showed that drastic interdiffusion of Si into the superconductor occurred during annealing if the Y-Ba-Cu-O was deposited direcdy on Si or SiO2, and this interdiffusion destroyed the superconducting properties. This paper describes the results of the use of a zirconia buffer layer as a diffusion barrier in the growth of thin YBa2Cu3Ox films on Si. A more complete description of the growth and characterization of these films will be published elsewhere.Thin film deposition was carried out by sequential electron beam evaporation in vacuum onto clean or oxidized single crystal Si wafers. The first layer evaporated was 0.4 μm of zirconia.


Author(s):  
Gyeung Ho Kim ◽  
Mehmet Sarikaya ◽  
D. L. Milius ◽  
I. A. Aksay

Cermets are designed to optimize the mechanical properties of ceramics (hard and strong component) and metals (ductile and tough component) into one system. However, the processing of such systems is a problem in obtaining fully dense composite without deleterious reaction products. In the lightweight (2.65 g/cc) B4C-Al cermet, many of the processing problems have been circumvented. It is now possible to process fully dense B4C-Al cermet with tailored microstructures and achieve unique combination of mechanical properties (fracture strength of over 600 MPa and fracture toughness of 12 MPa-m1/2). In this paper, microstructure and fractography of B4C-Al cermets, tested under dynamic and static loading conditions, are described.The cermet is prepared by infiltration of Al at 1150°C into partially sintered B4C compact under vacuum to full density. Fracture surface replicas were prepared by using cellulose acetate and thin-film carbon deposition. Samples were observed with a Philips 3000 at 100 kV.


Sign in / Sign up

Export Citation Format

Share Document