scholarly journals Flexible Temperature Sensor Integrated with Soft Pneumatic Microactuators for Functional Microfingers

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Satoshi Konishi ◽  
Akiya Hirata

Abstract The integration of a flexible temperature sensor with a soft microactuator (a pneumatic balloon actuator) for a functional microfinger is presented herein. A sensor integrated with a microactuator can actively approach a target for contact detection when a distance exists from the target or when the target moves. This paper presents a microfinger with temperature sensing functionality. Moreover, thermocouples, which detect temperature based on the Seebeck effect, are designed for use as flexible temperature sensors. Thermocouples are formed by a pair of dissimilar metals or alloys, such as copper and constantan. Thin-film metals or alloys are patterned and integrated in the microfinger. Two typical thermocouples (K-type and T-type) are designed in this study. A 2.0 mm × 2.0 mm sensing area is designed on the microfinger (3.0 mm × 12 mm × 400 μm). Characterization indicates that the output voltage of the sensor is proportional to temperature, as designed. It is important to guarantee the performance of the sensor against actuation effects. Therefore, in addition to the fundamental characterization of the temperature sensors, the effect of bending deformation on the characteristics of the temperature sensors is examined with a repeated bending test consisting of 1000 cycles.

2018 ◽  
Vol 24 (4) ◽  
pp. 739-743 ◽  
Author(s):  
Simone Luigi Marasso ◽  
Matteo Cocuzza ◽  
Valentina Bertana ◽  
Francesco Perrucci ◽  
Alessio Tommasi ◽  
...  

Purpose This paper aims to present a study on a commercial conductive polylactic acid (PLA) filament and its potential application in a three-dimensional (3D) printed smart cap embedding a resistive temperature sensor made of this material. The final aim of this study is to add a fundamental block to the electrical characterization of printed conductive polymers, which are promising to mimic the electrical performance of metals and semiconductors. The studied PLA filament demonstrates not only to be suitable for a simple 3D printed concept but also to show peculiar characteristics that can be exploited to fabricate freeform low-cost temperature sensors. Design/methodology/approach The first part is focused on the conductive properties of the PLA filament and its temperature dependency. After obtaining a resistance temperature characteristic of this material, the same was used to fabricate a part of a 3D printed smart cap. Findings An approach to the characterization of the 3D printed conductive polymer has been presented. The major results are related to the definition of resistance vs temperature characteristic of the material. This model was then exploited to design a temperature sensor embedded in a 3D printed smart cap. Practical implications This study demonstrates that commercial conductive PLA filaments can be suitable materials for 3D printed low-cost temperature sensors or constitutive parts of a 3D printed smart object. Originality/value The paper clearly demonstrates that a new generation of 3D printed smart objects can already be obtained using low-cost commercial materials.


2019 ◽  
Vol 7 (42) ◽  
pp. 24493-24501 ◽  
Author(s):  
Yangyang Xin ◽  
Jian Zhou ◽  
Gilles Lubineau

Stretchable temperature sensors are critical components in soft robotics.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000056-000060
Author(s):  
Tsutomu Sugawara ◽  
Hiroshi Matsumoto ◽  
Hiroki Ito ◽  
Shingo Sato ◽  
Masanari Kokubu

Abstract In recent years, initiatives for improving the fuel consumptions have been accelerated to reduce the CO2 emissions in exhaust gas from an automotive engine; as a measure against global warming. One of the known techniques to reduce CO2 emissions, is more accurate temperature measurement of the engine. For such application, sensors such as thermistors or thin-film platinum temperature sensors have been widely used for sensing exhaust gas temperature. Especially, the thin-film platinum temperature sensors were favorable because of its linearity in resistance to temperature dependensy and accuracy in temperature measurements. However, the deformation of a resistor circuit in thin-film platinum temperature sensor elements have been observed after used in high temperature. The deformation causes the resistance drifts which leads to less accurate temperature measurements. In this study, durability of the co-fired platinum temperature sensor element was examined for high temperature application. As of result, we found that the resistance drift of the co-fired platinum temperature sensor elements were smaller than that of the thin-film platinum temperature sensor elements; after storage test at 1100 °C. Thus, the co-fired platinum temperature sensor elements can be used for higher temperature sensing, which can contribute to the reduction of CO2 emission of automotive engines.


2013 ◽  
Vol 193 ◽  
pp. 170-181 ◽  
Author(s):  
J. Martinez-Quijada ◽  
S. Caverhill-Godkewitsch ◽  
M. Reynolds ◽  
L. Gutierrez-Rivera ◽  
R.W. Johnstone ◽  
...  

2010 ◽  
Vol 5 (2) ◽  
pp. 160-167
Author(s):  
Michelly De Souza ◽  
Bertrand Rue ◽  
Denis Flandre ◽  
Marcelo Antonio Pavanello

This paper presents the performance of lateral SOI PIN diodes for temperature sensing in the range of 100 K to 400 K. Experimental results indicate that PIN diodes can be used to implement temperature sensors with high accuracy in cryogenic regime, provided that a suitable temperature range is chosen for calibration. Numerical simulations using Atlas two-dimensional simulator were performed in order to confirm this hypothesis and extend the analysis, verifying the accuracy of the existing model.


Author(s):  
Mourad Elsobky ◽  
Alessandro Ottaviani ◽  
Mohammed Alomari ◽  
Zili Yu ◽  
Thomas Deuble ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4105 ◽  
Author(s):  
Jin Pan ◽  
Shiyu Liu ◽  
Hongzhou Zhang ◽  
Jiangang Lu

Thermal-resistance temperature sensors generally employ temperature-sensitive materials as active layers, which are always deposited on a flexible substrate to improve flexibility. Such a temperature sensor is usually integrated in wearable devices with other sensors, such as pressure sensors and stretchable sensors. In prior works, the temperature and pressure sensors are usually located in different layers in a multifunction sensor, which results in a complicated fabrication process, as well as a large thickness of devices. Meanwhile, many temperature sensors are based on large areas of non-transparent materials, leading to difficulties in integrating display applications. In this paper, we demonstrate a flexible temperature sensor based on polyaniline/graphene (GPANI)–polyvinyl butyral (PVB) thin film and indium tin oxides (ITO)- polyethylene terephthalate (PET) substrates. The GPANI particles embedded in PVB film not only contribute to temperature detection, but also response to external pressures, due to weak deformations. In addition, the thin composite film (2.7 μm) highly improved the transparency. By optimizing the device structure, the sensor integrates temperature and pressure detection into one single layer, which shows a wide temperature range of 25–80 °C, a pressure range of 0–30 kPa, and a high transparency (>80%). The temperature sensor offers great potential for applications in emerging wearable devices and electronic skins.


2020 ◽  
Vol 10 (2) ◽  
pp. 177-184
Author(s):  
Frank Gerlach ◽  
Kristina Ahlborn ◽  
Winfried Vonau

All-solid-state sensors have several advantages compared to conventional ones. These include, e.g., miniaturization, planar design, location independence and an uncom­plicated realization of sensors for high pressure and high temperature. Therefore, a number of physical sensors, such as temperature sensors, pressure sensors, rotation angle sensors and force sensors are available in thin-film techniques. The presented paper shows the advantages to combination of thin and thick film tech­niques to manufacture electrochemical sensors, especially using pulsed laser ablation to create amorphous layers of glass. Furthermore, it investigates the range of possibilities for characterization of bulk and surface properties with electrochemical methods and specialized techniques with thermally stimulated currents (TSC). 


Sign in / Sign up

Export Citation Format

Share Document